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Abstract This paper addresses the Monte Carlo ap-
proximation of posterior probability distributions. In

particular, we consider the population Monte Carlo

(PMC) technique, which is based on an iterative impor-

tance sampling (IS) approach. An important drawback

of this methodology is the degeneracy of the impor-
tance weights (IWs) when the dimension of either the

observations or the variables of interest is high. To al-

leviate this difficulty, we propose a new method that

performs a nonlinear transformation of the IWs. This
operation reduces the weight variation, hence it avoids

degeneracy and increases the efficiency of the IS scheme,

specially when drawing from proposal functions which

are poorly adapted to the true posterior. For the sake

of illustration, we have applied the proposed algorithm
to the estimation of the parameters of a Gaussian mix-

ture model. This is a simple problem that enables us

to discuss the main features of the proposed technique.

As a practical application, we have also considered the
challenging problem of estimating the rate parameters

of a stochastic kinetic model (SKM). SKMs are mul-

tivariate systems that model molecular interactions in

biological and chemical problems. We introduce a par-

ticularization of the proposed algorithm to SKMs and
present numerical results.
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1 Introduction

The problem of performing inference in multidimen-

sional spaces appears in many practical applications.
For example, it is of increasing interest in the biologi-

cal sciences to develop new techniques that allow for the

efficient estimation of the parameters governing the be-

havior of complex autoregulatory networks (Wilkinson,

2011a). The main difficulty often encountered when
tackling this kind of problems is the design of numerical

inference algorithms that scale up efficiently with the

dimension of the parameter space.

A very common strategy, which has been success-

fully applied in a broad variety of complex prob-
lems, is the Monte Carlo methodology (Robert and

Casella, 2004). We consider a recently proposed tech-

nique known as population Monte Carlo (PMC) (Cappé

et al, 2004), which is based on an iterative importance

sampling (IS) approach. The aim of this method is the
approximation of probability distributions by way of

discrete random measures consisting of samples and

associated importance weights (IWs). The target dis-

tribution is often the posterior distribution of a set of
variables of interest, given some observed data.

The main advantages of the PMC scheme, compared

to the widely established Markov chain Monte Carlo

(MCMC) methodology (Robert and Casella, 2004), are

the possibility of developing parallel implementations,
the sample independence and the fact that an unbiased

estimate is provided at each iteration, which avoids the

need of a convergence period.
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On the contrary, an important drawback of the IS

approach, and particulary of PMC, is that its perfor-

mance heavily depends on the choice of the proposal

distribution (or importance function). When the target

probability density function (pdf) is very sharp with
respect to the proposal (this occurs when, e.g., the di-

mension of the variables of interest or the number of

observations is high), the vast majority of the IWs be-

come practically zero, leading to an extremely low num-
ber of representative samples (Kong et al, 1994; Doucet

et al, 2000). This problem is commonly known as weight

degeneracy and is closely related to the “curse of di-

mensionality” (Bengtsson et al, 2008). The issue was

already mentioned in the original paper (Cappé et al,
2004). However, to the best of our knowledge, it has not

been successfully addressed in the PMC framework.

The effort in the field of PMC algorithms has been

directed toward the design of efficient proposal func-

tions. The recently proposed mixture PMC technique

(Cappé et al, 2008) models the importance functions
as mixtures of kernels. The weights and the parameters

of each mixture component are adapted along the iter-

ations to minimize the Kullback-Leiber divergence be-

tween the target density and the proposal. This scheme
also suffers from degeneracy and the authors of (Cappé

et al, 2008) propose to apply a Rao-Blackwellization

scheme in order to mitigate this drawback.

Another recently proposed PMC scheme is based

on the Gibbs sampling method (Djuric et al, 2011) and

allows to sample efficiently from high-dimensional pro-
posals. However, the IWs still present severe degener-

acy due to the extreme values of the likelihood function

in high-dimensional spaces. The technique is based on

the multiple marginalized PMC algorithm introduced

in (Bugallo et al, 2009; Shen et al, 2010).

In this paper we propose a novel PMC method,
termed nonlinear PMC (NPMC). The emphasis is not

placed on the proposal update scheme, which can be

very simple1. The main feature of the technique is the

application of a nonlinear transformation to the IWs

in order to reduce their variations. In this way, the ef-
ficiency of the sampling scheme is improved (specially

when drawing from “poor” proposals) and the degen-

eracy of the weights is drastically mitigated even when

the number of generated samples is relatively small. We
provide a simple convergence analysis for two types of

nonlinear transformations.

To illustrate the degeneracy problem and evaluate

the performance of the proposed method we have used

a simple Gaussian mixture model (GMM), already dis-

cussed in (Cappé et al, 2004). The NPMC scheme out-

1 Here, for instance, we restrict ourselves to multivariate
normal densities when choosing the importance functions.

performs the original PMC of (Cappé et al, 2004) in

terms of robustness and accuracy.

As a practical application, we have chosen the chal-

lenging problem of estimating the parameters in sto-

chastic kinetic models (SKMs) (Wilkinson, 2011a,b;
Golightly and Wilkinson, 2011; Milner et al, 2013).

SKMs describe the time evolution of the population of

a set of chemical species, which evolve according to a

set of constant rate parameters. We introduce a partic-
ularization of the NPMC algorithm to SKMs and show

numerical results for the Lotka-Volterra model, con-

sisting of two interacting species related by three reac-

tion equations with associated unknown rates (Volterra,

1926). In this scenario, the proposed method turns
out advantageous compared to state-of-the-art MCMC

techniques (Golightly and Wilkinson, 2011).

The rest of the paper is organized as follows. A for-

mal problem statement is presented in Section 2. In Sec-
tion 3 the PMC algorithm is described and the weight

degeneracy problem is discussed. The proposed NPMC

method is introduced in Section 4, with a convergence

analysis in Section 5. In Section 6 we present numerical

results on a GMM that illustrate the effects of degener-
acy and the performance of the proposed algorithm. In

Section 7 we describe the practical application of the

proposed algorithm to the estimation of the rate para-

meters of a SKM, and show numerical results. Section
8 summarizes the main findings of the paper.

2 Problem Statement

Let θ = [θ1, . . . , θK ]⊤ be a column vector of K unob-

served real random variables with prior density p(θ)

and let y = [y1, . . . , yN ]⊤ be a vector of N real random
observations related to θ by way of a likelihood func-

tion p(y|θ). In this paper we address the problem of

approximating the posterior probability distribution of

θ, i.e., the (conditional) distribution with density

p(θ|y) ∝ p(y|θ)p(θ), (1)

using a random grid of M points, {θ(i)}M
i=1, in the space

of the random vector θ. Once the grid is generated, it is

simple to approximate any moments of p(θ|y), i.e., ex-

pectations of the form Ep(θ|y)[f(θ)] =
∫

f(θ)p(θ|y)dθ,

where f : RK → R is some real integrable function of

θ. For example, the posterior mean of θ can be approx-
imated as Ep(θ|y)[θ] ≈ 1

M

∑M
i=1 θ(i).

Unfortunately, the generation of samples that repre-

sent the probability measure p(θ|y)dθ adequately when

K (or N) is large is normally a very difficult task. The
main goal of this work is to devise and assess an effi-

cient computational inference (Monte Carlo) methodol-

ogy for the approximation of p(θ|y)dθ and its moments.
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3 Population Monte Carlo

3.1 Importance sampling

One of the main applications of statistical Monte Carlo
methods is the approximation of integrals of the form

(f, π) =

∫

f(θ)π(θ)dθ,

where π(θ) is some pdf of interest (termed the tar-

get density). In problems of the type described in Sec-

tion 2, the target density is the posterior pdf of θ, i.e.,

π(θ) = p(θ|y). If π(θ) is some standard pdf, then it is
straightforward to draw a random i.i.d. (independent

and identically distributed) sample from π(θ) and ap-

proximate (f, π) by the sample mean. However, in many

practical cases it is not possible to draw from π(θ) di-
rectly. A common approach to overcome this difficulty

is to apply an IS methodology (Robert and Casella,

2004). The key idea is to generate an i.i.d. sample of

size M , ΘM = {θ(i)}M
i=1, from a (simpler) proposal pdf

q(θ), and then compute normalized IWs w(i) as

w(i)∗ ∝
π(θ(i))

q(θ(i))
, w(i) =

w(i)∗

∑M

j=1 w(j)∗
, i = 1, . . . , M.

Using ΘM and the associated weights, we can construct

a discrete random measure

πM (dθ) =

M
∑

i=1

w(i)δθ(i)(dθ),

where δθ(i)(dθ) is the unit delta measure located at θ =
θ(i), and approximate (f, π) by the weighted sum

(f, πM ) =
M
∑

i=1

w(i)f(θ(i)).

The efficiency of an IS algorithm depends heavily

on the choice of the proposal, q(θ). However, in order
to ensure the asymptotic convergence of the approxi-

mation (f, πM ), as M → ∞, it is sufficient to select

q(θ) such that q(θ) > 0 whenever π(θ) > 0 (Robert

and Casella, 2004). Finally, note that the computation
of the normalized IWs requires that both π(θ) and q(θ)

can be evaluated up to a proportionality constant.

3.2 Population Monte Carlo algorithm

The population Monte Carlo (PMC) method (Cappé

et al, 2004) is an iterative IS scheme that seeks to gen-
erate a sequence of proposal pdf’s qℓ(θ), ℓ = 1, . . . , L,

such that every new proposal is closer (in some ade-

quate sense to be defined) to the target density π(θ).

Such scheme demands, therefore, the ability to learn

about the target π(θ), given the set of samples and

weights at the (ℓ − 1)-th iteration, in order to produce

the new proposal qℓ(θ) for the ℓ-th iteration (ℓ ≥ 2).

The PMC algorithm is outlined in Table 1.

Table 1 Generic PMC algorithm (Cappé et al, 2004)

Iteration (ℓ = 1, . . . , L):

1. Select a proposal pdf qℓ(θ), based on Θ̃M
ℓ−1 for ℓ ≥ 2. For

ℓ = 1, choose q1(θ) = p(θ), the prior density.

2. Draw a set of i.i.d. samples ΘM
ℓ

= {θ(i)
ℓ

}M
i=1 from qℓ(θ).

3. Compute normalized IWs w
(i)
ℓ

∝ π(θ(i)
ℓ

)/qℓ(θ
(i)
ℓ

), i =
1, . . . , M .

4. Perform a resampling step according to the weights w
(i)
ℓ

to create an unweighted sample set Θ̃M
ℓ

= {θ̃(i)
ℓ }M

i=1.

At every iteration of the algorithm it is possible to

compute an estimate of (f, π) as

(f, πM
ℓ ) =

M
∑

i=1

w
(i)
ℓ f(θ

(i)
ℓ )

and, if the proposals qℓ(θ) are actually improved across

iterations, it can be expected that the approximation

error |(f, π) − (f, πM
ℓ )| also decreases with ℓ.

A frequently used index for the performance

of Monte Carlo approximations of probability mea-

sures is the effective sample size (ESS) M eff =

[
∑M

i=1(w
(i))2]−1 and its normalized version (NESS)

Mneff = M eff/M (Kong et al, 1994; Doucet et al,
2000). We expect the ESS to increase along the itera-

tions as the algorithm converges. Thus, it may be used

to quantitatively monitor the convergence of the PMC

algorithm and to stop the adaptation when the ESS
reaches a steady value.

However, unless the proposal pdf is well tailored to

the target density, the resulting IWs will often present

very large variations, leading to a low number of ef-

fective samples. This problem is well known to affect
IS schemes and is usually termed degeneracy of the

weights (Kong et al, 1994; Doucet et al, 2000).

3.3 Degeneracy of the importance weights

The degeneracy of the IWs is a problem that arises

when the normalized IWs w(i), i = 1, ..., M , of a set of

samples {θ(i)}M
i=1 present large fluctuations and their

maximum, maxi w(i), is close to one, leading to an ex-
tremely low ESS. This situation occurs when the target

and the proposal densities are approximately mutually

singular, i.e., they (essentially) have disjoint support.
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The degeneracy of the IWs critically increases with

K (Bengtsson et al, 2008), which has been widely ac-

cepted as one of the main drawbacks of IS. However, it

can be easily verified (numerically) that existing PMC

methods can suffer from degeneracy even when applied
to low dimensional systems. Assume that the target pdf

is the posterior given by Eq. (1) and consider a set of M

samples {θ(i)}M
i=1 drawn from the prior pdf p(θ), which

is the case at the first iteration of the PMC algorithm.
Assuming conditionally independent observations, the

IW associated to the i-th sample is given by

w(i) ∝ p(y|θ(i)) =

N
∏

n=1

p(yn|θ
(i)), i = 1, . . . , M. (2)

Thus, the IWs are obtained from a likelihood consisting

of the product of a potentially large number of factors.

As the number of observations N increases, the pos-

terior probability concentrates in a smaller region (it
becomes sharper), leading to a low probability of ob-

taining representative samples. This shows how in low

dimensional systems degeneracy of the IWs can be mo-

tivated by a high number of observations N , unless the

computational inference method is explicitly designed
to account for this difficulty. In Section 6 we present nu-

merical results to support this claim, which provides a

rationale to understand the poor performance of exist-

ing PMC methods with certain low dimensional models.

The degeneracy problem was already identified in
(Cappé et al, 2004). However, to the best of our knowl-

edge, no systematic solution has been provided so far

for this problem. In the next section we introduce a

new methodology to tackle the weight degeneracy, ei-

ther due to large K or to large N . The key feature of the
method is the application of a nonlinear transformation

to the IWs, in order to reduce their variations and ob-

tain an ESS that is large enough to adequately perform

the proposal update and provide consistent estimates
of the variables of interest.

4 Algorithms

In this section we describe the proposed algorithm,

termed nonlinear PMC (NPMC). We adopt a simple

proposal update scheme, where the importance func-

tions are multivariate normal (MVN) pdf’s with mo-
ments matched to the latest approximation of the pos-

terior distribution. The key feature is the application of

a nonlinear transformation of the IWs. Besides the basic

version of the algorithm, we propose an adaptive ver-
sion where this transformation is only applied when the

value of the ESS is below a certain threshold. Finally,

we explore different forms of the weight transformation.

4.1 Nonlinear PMC

Assume, in the sequel, that the target pdf is the poste-

rior density given by Eq. (1). For simplicity, we select

the importance functions in the PMC scheme as MVN

densities. The initial proposal is selected as the prior,

i.e., q1(θ) = p(θ). In the subsequent iterations

qℓ(θ) = N (θ; µℓ, Σℓ), ℓ = 2, . . . , L,

where µℓ is the mean vector and Σℓ is a positive def-

inite covariance matrix. These parameters are chosen
to match the moments of the distribution described by

the discrete measure obtained at the previous iteration.

In particular, we compute the mean and covariance as

µℓ =
1

M

M
∑

i=1

θ̃
(i)

ℓ−1 and (3)

Σℓ =
1

M

M
∑

i=1

(θ̃
(i)

ℓ−1 − µℓ)(θ̃
(i)

ℓ−1 − µℓ)
⊤, (4)

where {θ̃
(i)

ℓ−1}
M
i=1 is the set of (unweighted) samples

available after the (ℓ − 1)-th iteration. Note that this
particular proposal update scheme is not a constraint

of the algorithm. The importance functions can be de-

signed as freely as in the standard PMC method.

The key modification of the algorithm is the com-
putation of transformed IWs (TIWs). We introduce

a sequence of nonlinear, real positive functions ϕM
ℓ ,

ℓ = 1, . . . , L, which depend both on the iteration in-

dex ℓ and the size-M sample at the (ℓ − 1)-th itera-

tion. The unnormalized TIWs are computed as w̄
(i)∗
ℓ =

ϕM
ℓ (w

(i)∗
ℓ ), i = 1, . . . , M , where w

(i)∗
ℓ is the standard

unnormalized IW associated to the sample θ
(i)
ℓ .

The nonlinearity should be chosen so as to re-

duce the variation of the normalized TIWs, w̄
(i)
ℓ =

w̄
(i)∗
ℓ /

∑M
j=1 w̄

(j)∗
ℓ . Intuitively, it should preserve the or-

dering of the samples (those with larger IWs should also

have the largest TIWs) while reducing the difference

maxi w̄
(i)
ℓ − mini w̄

(i)
ℓ or some other measure of weight

variation. This modification of the algorithm mitigates

the sensitivity of the conventional IS to the selection of

the proposal pdf. The NESS computed from the TIWs

w̄
(i)
ℓ is denoted as M̄neff

ℓ = [M
∑M

i=1(w̄
(i)
ℓ )2]−1. The

proposed generic algorithm is outlined in Table 2.

Step 5 of the NPMC method involves multinomial

resampling, which consists in sampling with replace-

ment from the set {θ
(i)
ℓ }M

i=1 with probabilities equal to

the associated TIWs w̄
(i)
ℓ , to obtain an unweighted set

{θ̃
(i)

ℓ }M
i=1. This is not the only choice of resampling algo-

rithm and we use it only for the sake of simplicity. See,

e.g., (Bain and Crisan, 2008; Carpenter et al, 1999), for

an overview of resampling techniques.



Population Monte Carlo with transformed weights 5

Table 2 Nonlinear PMC with target π(θ) ∝ p(y|θ)p(θ).

Iteration (ℓ = 1, . . . , L):

1. Select the proposal pdf qℓ(θ):
– At iteration ℓ = 1, let q1(θ) = p(θ).
– At iterations ℓ = 2, . . . , L the proposal is a MVN pdf

qℓ(θ) = N (θ; µℓ, Σℓ), where the mean and covariance
are computed according to Eqs. (3) and (4).

2. Draw a set of M samples ΘM
ℓ

= {θ(i)
ℓ

}M
i=1 from qℓ(θ).

3. Compute the unnormalized IWs

w
(i)∗
ℓ

∝ p(θ(i)
ℓ

|y)

qℓ(θ
(i)
ℓ

)
∝ p(y|θ(i)

ℓ
)p(θ(i)

ℓ
)

qℓ(θ
(i)
ℓ

)
, i = 1, . . . , M.

4. Compute normalized TIWs as

w̄
(i)∗
ℓ

= ϕM
ℓ (w(i)∗

ℓ
), w̄

(i)
ℓ

=
w̄

(i)∗
ℓPM

j=1 w̄
(j)∗
ℓ

, i = 1, . . . , M.

5. Resample to obtain an unweighted set Θ̃M
ℓ

= {θ̃(i)
ℓ }M

i=1:

for i, j = 1, . . . , M , let θ̃
(i)
ℓ = θ

(j)
ℓ

with probability w̄
(j)
ℓ

.

At each iteration ℓ = 1, . . . , L, we obtain two dis-

crete approximations of the posterior distribution with

density π(θ), namely the measures

π̄M
ℓ (dθ) =

M
∑

i=1

w̄
(i)
ℓ δ

θ
(i)
ℓ

(dθ) and

π̃M
ℓ (dθ) =

1

M

M
∑

i=1

δ
θ̃
(i)
ℓ

(dθ),

and the integral (f, π) can be approximated as either

(f, π̄M
ℓ ) =

M
∑

i=1

w̄
(i)
ℓ f(θ

(i)
ℓ ) or (f, π̃M

ℓ ) =
1

M

M
∑

i=1

f(θ̃
(i)

ℓ ).

The estimator (f, π̃M
ℓ ) involves one extra Monte Carlo

step (resampling) and, hence, it has more variance than
(f, π̄M

ℓ ) (Douc et al, 2005). Therefore, we assume in

the sequel that estimates are computed by way of the

measure π̄M
ℓ unless explicitly stated otherwise.

Note as well that, since π(θ) ∝ p(y|θ)p(θ), any ex-

pectation with respect to the posterior distribution is

actually an integral with respect to the measure π(θ)dθ,

i.e., Ep(θ|y)[f(θ)] = (f, π), and, therefore, it can be ap-

proximated using π̄M
ℓ , namely, Ep(θ|y)[f(θ)] ≈ (f, π̄M

ℓ ).

4.2 Modified NPMC

The nonlinear transformation ϕM
ℓ is most useful at the

first iterations of the NPMC, when the proposal density

is generally much broader than the target density and

the standard IWs may display high variability. How-

ever, in some applications it may be possible to re-

move the nonlinear transformation after a few itera-

tions, when the proposal is closer to the target.

Thus, we propose a modification of the NPMC algo-
rithm which consists in applying the nonlinear transfor-

mation only if the ESS M eff
ℓ computed from the stan-

dard normalized IWs w
(i)
ℓ is below a specified threshold

M eff
min. We recommend that the threshold M eff

min be a

relatively large value (e.g., M
2 ≤ M eff

min < M) to ensure
that the algorithm is sufficiently stable before removing

the transformation. The modified algorithm only differs

from the NPMC in step 4, which is outlined in Table 3.

Table 3 Modified NPMC algorithm

Step 4 of the NPMC algorithm is replaced by the following
computations:

4. Compute the normalized IWs w
(i)
ℓ

= w
(i)∗
ℓ

/
PM

j=1 w
(j)∗
ℓ

and the ESS Meff
ℓ

= [
PM

i=1(w(i)
ℓ

)2]−1.

If Meff
ℓ

< Meff
min, compute normalized TIWs w̄

(i)∗
ℓ

=

ϕM
ℓ

(w(i)∗
ℓ

), w̄
(i)
ℓ

= w̄
(i)∗
ℓ

/
PM

j=1 w̄
(j)∗
ℓ

, i = 1, . . . , M . Oth-

erwise, set w̄
(i)
ℓ

= w
(i)
ℓ

.

4.3 Selecting the transformation of the IWs

The nonlinearity ϕM
ℓ may be constructed in multiple

ways. In this section we describe and intuitively justify

two specific functions based on the “tempering” and
the “clipping”, respectively, of the standard IWs.

4.3.1 Tempering

In this case, the unnormalized TIWs are obtained as

w̄
(i)∗
ℓ = ϕM

ℓ (w
(i)∗
ℓ ) = (w

(i)∗
ℓ )γℓ , i = 1, . . . , M,

where 0 < γℓ ≤ 1. The sequence γℓ, ℓ = 1, . . . , L, has

to be adapted along the iterations, taking low values at
the first steps and getting closer to 1 as the algorithm

converges. The sequence γℓ can be selected a priori, re-

gardless of the values of the IWs. For instance, it may be

constructed as a polynomial function γℓ ∝ ℓm, m ∈ N,
or a sigmoid function γℓ = 1

1+e−ℓ of the iteration index

ℓ. While in simple examples this procedure provides a

remarkable reduction of the weight variations and an in-

crease of the ESS, in complex problems it is not enough

to guarantee a stable and consistent convergence.

This technique is closely related to the simulated

tempering of the target density, which has been widely

studied in the MCMC literature (Gramacy et al, 2010;
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Marinari and Parisi, 2007). More recently, a class of

sequential Monte Carlo (SMC) samplers that rely on

IS and can encompass PMC methods as a particular

case have been proposed (Del Moral et al, 2006), and

tempering techniques have been specifically considered
within this framework (Del Moral et al, 2006; Jasra

et al, 2011; Beskos et al, 2012). However, the IWs in

the SMC methodology of (Del Moral et al, 2006) are

computed in the conventional manner, and tempering is
only applied to the target density (Beskos et al, 2012).

Therefore, these methods depart from the NPMC al-

gorithm, as the same set of samples in the parameter

space (even drawn from the same proposal) would be

weighted differently. However, it is possible to derive
a NPMC algorithm with tempering within the frame-

work of (Del Moral et al, 2006), as shown in Appendix

A, under some constraints on the choice of the impor-

tance functions. Unfortunately, the latter constraints
rule out the class of qℓ(θ) introduced in Section 4.1.

4.3.2 Clipping

We now introduce a simple and effective methodology

that avoids the fitting of any parameters and guaran-
tees a baseline ESS at all iterations. In particular, we

perform a clipping procedure on the MT < M highest

IWs at each iteration of the NPMC algorithm. Since

the highest weights w
(i)
ℓ usually correspond to the most

representative samples θ
(i)
ℓ , we thus obtain flat TIWs

in the region of interest of θ. As a consequence, at least
MT samples obtain non negligible weights at all itera-

tions, allowing to consistently update the proposal.

To be specific, at each iteration ℓ, consider a permu-

tation i1, . . . , iM of the indices in {1, ..., M} such that

w
(i1)∗
ℓ ≥ . . . ≥ w

(iM )∗
ℓ and choose MT < M . We select

a threshold value T M
ℓ = w

(iMT
)∗

ℓ and apply clipping to

the IWs w
(ik)∗
ℓ ≥ T M

ℓ , k = 1, . . . , MT − 1. Thus, the

unnormalized TIWs w̄
(i)∗
ℓ , i = 1, . . . , M , are computed

from the original IWs w
(i)∗
ℓ as2

w̄
(i)∗
ℓ = ϕM

ℓ (w
(i)∗
ℓ ) = min(w

(i)∗
ℓ , T M

ℓ ). (5)

Note that, since T M
ℓ = w

(iMT
∗)

ℓ , the number of samples

with equal TIWs is exactly MT .

The selection of the parameter MT in relation to the

total number of samples M is not crucial. In practice,

we have found that choosing MT /M = 0.1 works well
for many examples. If the total number of samples M

2 According to Eq. (5) and the definition of the thresh-
old T M

ℓ
, ϕM

ℓ
is a function of both the complete weight set

{w(j)∗
ℓ

}M
j=1 and the index of the weight to be transformed,

i.e., ϕM
ℓ

: {w(j)∗
ℓ

, j = 1, . . . , M} × {1, . . . , M} → [1, +∞).

is very large, it is not necessary that MT ∝ M . Indeed,

MT should be simply large enough to “identify” the

region where the posterior probability mass is located.

Correspondingly, for the asymptotic analysis of Section

5 we will assume that MT /M → 0 as M → ∞.

This technique is a generalization of the one pro-

posed in (Koblents and Mı́guez, 2011), which applies
clipping to the likelihood p(y|θ) instead of to the com-

plete weights. However, transforming only the likeli-

hood does not guarantee a sufficient ESS, and its per-

formance heavily depends on the selection of the prior.

5 Convergence of nonlinear IS

The convergence of the original PMC scheme is easily

justified by the convergence of the standard IS method.

Indeed, it can be proved (Geweke, 1989) that the dis-

crete measure πM
ℓ (dθ) =

∑M

i=1 w
(i)
ℓ δ

θ
(i)
ℓ

(dθ) converges

to π(θ)dθ under mild assumptions, meaning that

lim
M→∞

|(f, πM
ℓ ) − (f, π)| = 0 almost surely (a.s.) (6)

for every ℓ ∈ {1, ..., L} and any f ∈ B(RK), where

B(RK) is the set of bounded real functions over RK .

In Section 5.1, we provide a result similar to Eq. (6)

for the discrete measure π̄M
ℓ generated by the NPMC

algorithm with a clipping transformation. The analy-
sis, therefore, is concerned with the asymptotic perfor-

mance of the approximation as the number of samples

M grows, but not with the convergence as the itera-

tion index ℓ increases. Hence, we shall drop the latter
subscript for convenience in the sequel.

The section is completed with an analysis of the er-
ror induced by the tempering transformation. Note that

when γ < 1 (again, we drop the iteration subscript ℓ

and focus on a single iteration) the error in the approx-

imation of (f, π) via the NPMC scheme with tempering

does not vanish as M → ∞. It is relatively straightfor-
ward, however, to find an upper bound for the approx-

imation error (with fixed γ < 1 and M → ∞) and then

show that this error vanishes as γ → 1. These results

are formally obtained in Section 5.2.

5.1 Asymptotic convergence of IS estimators with

clipping

5.1.1 Notation and basic assumptions

Let π be the pdf associated to the target probability
distribution to be approximated, let q be the impor-

tance function used to propose samples in an IS scheme

(not necessarily normalized) and let h(θ) = aπ(θ) be
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a function proportional to π, with the proportionality

constant a > 0 independent of θ. The samples drawn

from the distribution associated to q are denoted θ(i),

i = 1, ..., M , and their associated unnormalized IWs are

w(i)∗ = h(θ(i))/q(θ(i)), i = 1, ..., M .

Let us define the weight function g(θ) = h(θ)/q(θ)

and, in particular, g(θ(i)) = w(i)∗. The support of g is

the same as the support of q, denoted S ⊆ RK . If we

assume that both q(θ) > 0 and π(θ) ≥ 0 for any θ ∈ S,
then g(θ) ≥ 0 for every θ ∈ S as well. Also, trivially,

π ∝ gq, with the proportionality constant independent

of θ. These assumptions are standard for classical IS.

The approximation πM of the target probability

measure generated by the standard IS method is con-
structed form the normalized IWs w(i), namely

πM (dθ) =

M
∑

i=1

w(i)δθ(i)(dθ),

where w(i) = g(θ(i))P
M
j=1 g(θ(j))

, i = 1, ..., M .

The nonlinear transformation ϕM of the weights is

assumed to be of a clipping class, as described in Sec-

tion 4.3.2. We note that, given an index permutation

i1, . . . , iM such that w(i1)∗ ≥ . . . ≥ w(iM )∗, the trans-

formation ϕM can be expressed as

ϕM (w(ik)∗)=

{

w(iMT
)∗, for k = 1, . . . , MT , and

w(ik)∗, for k = MT + 1, . . . , M.
(7)

We assume that the weight function g ∈ B(RK) is

upper bounded, and thus the TIWs satisfy w̄(i)∗ ≤
‖g‖∞ = sup

z∈RK |g(z)| < ∞.

The approximation π̄M of the target probability
measure generated by the nonlinear IS method is con-

structed form the normalized TIWs w̄(i) as

π̄M (dθ) =
M
∑

i=1

w̄(i)δθ(i)(dθ),

where w̄(i) = ϕM (g(θ(i)))P
M
j=1 ϕM (g(θ(j)))

, i = 1, ..., M . Addition-

ally, we introduce an approximation π̌M constructed

from a set of unnormalized TIWs w̌(i) that will be re-

ferred to as “bridge weights” in the sequel, namely

π̌M (dθ) =

M
∑

i=1

w̌(i)δθ(i)(dθ), (8)

where w̌(i) = ϕM (g(θ(i)))P
M
j=1 g(θ(j))

, i = 1, ..., M .

5.1.2 Asymptotic convergence

We aim at proving that limM→∞ |(f, π̄M )− (f, π)| = 0

a.s. for any f ∈ B(RK). To obtain such a result, we

split the problem into simpler questions by applying

the triangle inequality

|(f, π̄M ) − (f, π)| ≤ |(f, π̄M ) − (f, πM )|

+ |(f, πM ) − (f, π)|. (9)

The second term on the right hand side of (9) is han-
dled easily using standard IS theory. For the first term,

we have to prove that the discrete measure generated

by the nonlinear IS method (π̄M ) converges to the dis-

crete measure generated by the standard IS method

(πM ). This can be done by resorting to another trian-
gle inequality,

|(f, π̄M ) − (f, πM )| ≤ |(f, π̄M ) − (f, π̌M )|

+ |(f, π̌M ) − (f, πM )|, (10)

that reveals the role of the bridge measure in (8).

The following lemma establishes the asymptotic

convergence of the term |(f, π̄M ) − (f, π̌M )| in (10).

Lemma 1 Assume that limM→∞
MT

M
= 0, g ∈ B(RK),

and the transformation function ϕM satisfies (7). Then,

for every f ∈ B(RK) and sufficiently large M , there

exist positive constants c1, c
′
1 independent of M and MT

such that

P

{

|(f, π̄M ) − (f, π̌M )| ≤ c1
MT

M

}

≥ 1 − exp (−c′1M).

Proof: See Appendix B.

Next, we establish the convergence of the bridge

measure π̌M toward πM .

Lemma 2 Assume that limM→∞
MT

M
= 0, g ∈ B(RK)

and the transformation function ϕM satisfies (7). Then,

for every f ∈ B(RK) there exist positive constants c2, c
′
2

independent of M and MT such that

P

{

|(f, π̌M ) − (f, πM )| ≤ c2
MT

M

}

≥ 1 − exp (−c′2M).

Proof: See Appendix C.

The combination of Lemmas 1 and 2, together with

the triangle inequality (10), yields the convergence of
the error |(f, π̄M ) − (f, πM )|.

Lemma 3 Assume that limM→∞
MT

M
= 0, g ∈ B(RK),

and the transformation function ϕM satisfies (7). Then,

for every f ∈ B(RK), and sufficiently large M , there
exist positive constants c, c′ independent of M and MT

such that

P

{

|(f, π̄M ) − (f, πM )| ≤ c
MT

M

}

≥ 1 − 2 exp (−c′M).
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In particular,

lim
M→∞

|(f, π̄M ) − (f, πM )| = 0 a.s.

Proof: See Appendix D.

Finally, Lemma 3 can be combined with inequality

(9) to yield the desired result, stated below.

Theorem 1 Assume that limM→∞
MT

M
= 0, g ∈

B(RK) and the transformation function ϕM satisfies

(7). Then, for every f ∈ B(RK),

lim
M→∞

|(f, π̄M ) − (f, π)| = 0 a.s.

Proof: It is classical result that (Geweke, 1989)

lim
M→∞

|(f, πM ) − (f, π)| = 0 a.s. (11)

Combining (11) with the second part of Lemma 3 and
the triangle inequality in (9) yields the desired result.

⊓⊔

Remark 1 Lemma 3 shows that the approximation π̄M

that uses the transformed weights can be seen as a “dis-

tortion” of the conventional IS approximation πM . Such
distortion depends on the ratio MT /M and, hence, can

be controlled by the choice of MT .

5.2 Asymptotic convergence of IS estimators with
tempering

When the tempering transformation is applied, the

TIWs can be written as

w̄(i) =
g(θ(i))γ

∑M

j=1 g(θ(j))γ
, i = 1, ..., M. (12)

If γ < 1 is fixed and f ∈ B(RK) is non-constant, it is

apparent that the integral (f, π̄M ) does not converge to

(f, π) as M → ∞. However, it is straightforward to find
an upper bound for the distortion with respect to the

conventional IS approximation, (f, πM ), as given by the

following proposition.

Proposition 1 Assume that g ∈ B(RK), ϕM (w) = wγ

and both 0 < γ ≤ 1 and M < ∞ are fixed. Then, for
every f ∈ B(RK),

|(f, πM ) − (f, π̄M )| ≤ |(f(1 − gγ−1), πM )|

+ ‖f‖∞|(1 − gγ−1, πM )|. (13)

Proof: See Appendix E.

The inequality (13) is useful because it yields an
upper bound for the distortion |(f, πM ) − (f, π̄M )|, in-

troduced by the tempering nonlinearity, that depends

on the standard IS approximating measure πM alone.

Since 1 − gγ−1 ∈ B(RK), the standard convergence re-

sults for IS (Geweke, 1989) can be applied to the in-

tegrals on the right hand side of (13) and, as a conse-

quence,

lim
M→∞

|(f, πM ) − (f, π̄M )| ≤ |(f(1 − gγ−1), π)|

+ ‖f‖∞|(1 − gγ−1, π)| (14)

a.s. Moreover, (13) also shows that the difference

(f, πM ) − (f, π̄M ) vanishes when γ → 1. Indeed, when

γ → 1, (1− gγ−1, πM ) → 0 and (f(1− gγ−1), πM ) → 0,
hence

lim
γ→1

|(f, πM ) − (f, π̄M )| = 0.

Similarly, from (14) we observe that

lim
γ→1

lim
M→∞

|(f, π̄M ) − (f, π)| = 0 a.s.,

as intuitively expected.

6 Example 1: a Gaussian mixture model

In this section we provide numerical results that illus-

trate the degeneracy problem and the performance of

the proposed NPMC scheme applied to the Gaussian

mixture model (GMM) example of (Cappé et al, 2004).

6.1 Model

We consider the GMM given by

p(y|θ) = ρN (y; θ1, σ
2) + (1 − ρ)N (y; θ2, σ

2) (15)

where the variable of interest θ = [θ1, θ2]
⊤ contains the

means of the mixture components. The true values of

the unknowns are set to θ = [0, 2]⊤. The mixture coef-

ficient and the variance of the components are assumed
to be known and set to ρ = 0.2 and σ2 = 1.

We assume a prior pdf p(θ) = p(θ1)p(θ2) composed

of equal independent components for each unknown,

given by p(θk) = N (θk; ν, σ2/λ), for k = 1, 2. The hy-
perparameters are set to ν = 1 and λ = 0.1.

A set y of N i.i.d. scalar observations are drawn

from the mixture model in Eq. (15), and we aim at

approximating the posterior pdf π(θ) = p(θ|y).

6.2 Degeneracy of the importance weights

The model in Eq. (15) serves to illustrate the effects
of the degeneracy problem in a simple and low di-

mensional IS example. Consider a set of M samples

ΘM = {θ(i)}M
i=1 drawn form the prior pdf p(θ). The
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Fig. 1 Evolution of the average maximum IW maxi w(i) (left) and the ESS Meff (right) vs the number of observations N and
the number of samples M . The curves corresponding to maximum degeneracy (maxi w(i) = 1 and Meff = 1) are plotted with
circles. The curves corresponding to the optimum case with uniform weights (maxi w(i) = 1/M and Meff = M) are depicted
with squares. All curves are averaged over P = 103 independent simulation runs

IWs are computed from the likelihood function as in

Eq. (2). For this model, we have investigated the be-

havior of the maximum IW, maxi w(i), and the ESS,

M eff , when the number of observations N increases.
Let both the number of observations N and the num-

ber of samples M vary from 1 to 103. For each pair of

values of N and M we have performed P = 103 simu-

lation runs of the standard IS procedure.

In Figure 1 (left) the average maximum IW is rep-

resented versus M and N . The curves representing

the extreme cases maxi w(i) = 1 (degeneracy) and
maxi w(i) = 1/M (uniform weights) are also plotted

on the graph. It can be observed that, for a fixed M , as

the number of observations N increases, maxi w(i) → 1,

leading to severe degeneracy.

Equivalently, in Figure 1 (right) the average ESS is

represented versus M and N . The cases M eff = 1 and

M eff = M are plotted for reference. It can be observed
that, as N increases, the ESS is smaller for the same

value of M . For example, with N = 103 observations

and M = 103 samples, the average ESS is only 1.5.

6.3 Comparison of algorithms

In this section we compare, by way of computer simula-
tions, the performance of the GMM-PMC scheme pro-

posed in (Cappé et al, 2004), which we reproduce in Ta-

ble 4, the GMM-PMC with a clipping transformation,

and the NPMC scheme of Section 4 with tempering and
clipping transformations. We have performed P = 104

independent simulation runs of each algorithm, with

L = 10 iterations and M = 200 samples per iteration.

Table 4 GMM-PMC algorithm (Cappé et al, 2004).

Initialization (ℓ = 0):

1. Consider a set of p scales (variances) vj and an initial
number rj = m of samples per scale, j = 1, . . . , p.

2. For i = 1, . . . , M = pm, draw {θ(i)
0 } from q0(θ) = p(θ).

Iteration (ℓ = 1, . . . , L):

1. For j = 1, . . . , p

– generate a sample {θ(i)
ℓ

} of size rj from qℓ(θ) =

N (θ(i)
ℓ

; θ(i)
ℓ−1, vjIK), where IK denotes the identity

matrix of size K × K.

– compute the normalized IWs w
(i)
ℓ

∝ p(y|θ(i)
ℓ

)p(θ
(i)
ℓ

)

qℓ(θ
(i)
ℓ

)
.

2. Resample with replacement the set {θ(i)
ℓ

}M
i=1 according

to the weights w
(i)
ℓ

to obtain {θ̃(i)
ℓ }M

i=1.
3. For j = 1, . . . , p update rj as the number of elements

generated with variance vj which have been resampled.

The parameters of the GMM-PMC algorithm have

been selected as suggested in (Cappé et al, 2004) (p = 5
scales, v = [5, 2, 0.1, 0.05, 0.01]⊤, m = 40 samples per

scale). A minimum of 1% of samples per scale has been

kept as a baseline. The GMM-PMC scheme with TIWs

has been simulated simply substituting the standard

IWs w
(i)
ℓ in the resampling step by TIWs w̄

(i)
ℓ computed

via a clipping transformation (with MT = 20).

In the NPMC algorithm with tempering, the se-

quence γℓ has been obtained from the sigmoid function
of the iteration index as γℓ = 1

1+e−(ℓ−5) , ℓ = 1, . . . , L.

With this choice of nonlinearity, the transformation of

the weights is practically eliminated after 10 iterations.

The NPMC algorithm with clipping has been sim-

ulated in its modified version, i.e., with the nonlinear
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transformation removed when the ESS M eff reaches
a value of M eff

min = 100. In this problem this occurs on

average between the third and fourth iterations. On the

contrary, in the GMM-PMC scheme with clipping, the

ESS never reaches the threshold value and the nonlinear

transformation thus cannot be removed. The clipping
parameter has been set to MT = 20 in both algorithms.

In Figure 2 (left) the evolution of the average NESS

Mneff
ℓ along the iterations is depicted for the GMM-

PMC and the M̄neff
ℓ for the rest of schemes. It can be

observed that the original GMM-PMC scheme presents

a low NESS, converging to a value of 0.13. The GMM-

PMC with clipping outperforms the original scheme
providing an average final NESS of 0.35. The two

NPMC schemes, with tempering and clipping, provide

a smooth convergence of the NESS to a value of 0.94.

The degeneracy problem is most critical at the first

iterations of the PMC. The GMM-PMC scheme has an
initial NESS value close to zero, opposite to the rest

of schemes, where M̄neff
1 is around 0.1 (it is equal to

MT /M for the clipping schemes and depends on the

parameter γ1 for the tempering scheme). It can be ob-
served from Figure 2 (left) that in the NPMC schemes

the average NESS remains constant after convergence,

when the nonlinear transformation has been removed.

If we interpret the random vector θ̃ℓ with distrib-
ution π̃M

ℓ (dθ) = 1
M

∑M
i=1 δ

θ̃
(i)
ℓ

(dθ) (obtained after the

resampling step of the ℓ-th iteration) as an estimator of

θ, then the mean square error for the estimator of the

k-th log-rate parameter is naturally given by

MSEℓ,k =
1

M

M
∑

i=1

(θ̃
(i)
ℓ,k−θk)2 = (θ̂M

ℓ,k−θk)2+V ar(θ̃ℓ,k),

where θ̂M
ℓ,k = 1

M

∑M
i=1 θ̃

(i)
ℓ,k and V ar(θ̃ℓ,k) =

1
M

∑M

i=1(θ̃
(i)
ℓ,k − θ̂M

ℓ,k)2 are the marginal mean and vari-

ance, respectively, of θ̃ℓ,k given the probability measure
π̃M

ℓ . We have averaged the MSEℓ,k over P independent

simulations (with independent sets of observations).

In Figure 2 (right) the evolution of the average MSE

for θ1 (MSEℓ,1) is represented for the four algorithms.
Similar results have been obtained for θ2 and have thus

been omitted. The minimum MSE (MMSE) of each pa-

rameter, which has been approximated numerically, is

also shown for reference. It can be observed that the

GMM-PMC does not reach the MMSE with the given
number of samples M = 200. On the other side, the

GMM-PMC with clipping and the proposed NPMC

schemes outperform the original method in terms of

MSE, reaching the MMSE in about 6 iterations.

However, the most outstanding difference in the per-

formance of the analyzed algorithms is observed in the

variance of the MSE. The final mean and standard de-

viation values of the MSE for θ1 and θ2 at ℓ = L

are shown in Table 5. The estimates provided by the
GMM-PMC scheme present a very high variance. On

the contrary, the modified GMM-PMC and the pro-

posed NPMC schemes reach the MMSE, both in aver-

age and in standard deviation.

Assuming that the computation time for the GMM-

PMC method is 1, the GMM-PMC with clipping takes

1.0006 time units (that is, only is, 0.06 % higher) and

the NPMC schemes take 0.9565 and 0.9582 time units
for the tempering and clipping schemes, respectively.

This indicates that the proposed method outperforms

the original one also in terms of computational cost.
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Table 5 Mean and standard deviation (std) of the MSE of
θ1 and θ2 at the last iteration ℓ = L, for the analyzed PMC
schemes. The MMSE (mean and std) corresponding to the
true posterior p(θ|y) is also shown for comparison. Note that
all entries are multiplied by a factor of 103.

MSE θ1 MSE θ2
mean std mean std
×103 ×103 ×103 ×103

GMM-PMC 52.8 498.5 5.6 34.4
GMM-PMC clip 19.7 14.1 3.6 2.4
NPMC temp 19.1 13.8 3.3 2.4
NPMC clip 19.1 13.8 3.3 2.4

True posterior 19.1 13.7 3.2 2.3

7 Example 2: A stochastic kinetic model

In this section, the proposed NPMC method is applied

to the estimation of the parameters of a simple stochas-

tic kinetic model (SKM), known as the predator-prey
model. A SKM is a multivariate continuous-time jump

process modeling the interactions among molecules, or

species, that take place in chemical reaction networks

of biochemical and cellular systems (Wilkinson, 2011b).
Several MCMC schemes have been recently pro-

posed to address this problem. In (Boys et al, 2008) var-

ious MCMC algorithms are evaluated in data-poor sce-

narios. In (Golightly and Wilkinson, 2011) a likelihood-

free particle-MCMC (pMCMC) scheme is applied to
this problem. In (Milner et al, 2013) the authors pro-

pose an approximation of the likelihood based on the

moment closure approximation of the underlying sto-

chastic process.

7.1 Predator-prey model

The Lotka-Volterra, or predator-prey, model is a simple

SKM that describes the time evolution of two species
x1(t) (prey) and x2(t) (predator), t ∈ R, by means of

K = 3 reaction equations (Volterra, 1926)

x1
c1−→ 2x1 prey reproduction

x1 + x2
c2−→ 2x2 predator reproduction

x2
c3−→ ∅ predator death

where c = [c1, c2, c3]
⊤ is the vector of constant (yet

random) rate parameters ck > 0, k = 1, 2, 3.
Let xn = [x1,n, x2,n]⊤ denote the state of the system

at time instant t = n∆, n = 1, . . . , R, where x1,n =

x1(n∆), x2,n = x2(n∆) denote the nonnegative, integer

population of each species at this time instant and ∆
denotes a time-discretization period. We denote by x

the vector containing the population of each species at

R discrete time instants, i.e., x = [x⊤
1 , . . . ,x⊤

R]⊤.

Exact stochastic simulation of generic SKMs, and

predator-prey models in particular, can be carried out

by the Gillespie algorithm (Gillespie, 1977), which al-

lows to draw samples from p(xn|xn−1, c), n = 1, . . . , R.

We consider two different observation scenarios. In
the complete observation (CO) scenario we assume

that both species x1 and x2 are observed at regular

time intervals and corrupted by Gaussian noise, i.e.,

yn = xn +un, where un ∼ N (un;0, σ2I), n = 1, . . . , R.
We denote the complete vector of observations with di-

mension 2R × 1 as y = [y⊤
1 , . . . ,y⊤

R]⊤.

In the partial observation (PO) scenario only x1 is

observed at discrete time instants and also contami-

nated by Gaussian noise, i.e., yn = x1,n + un, where
un ∼ N (un; 0, σ2), n = 1, . . . , R. In the PO case, the

vector of scalar observations with dimension R × 1 is

constructed as y = [y1, . . . , yR]⊤.

The goal is to approximate the posterior distribu-

tion of the log-rate parameters θ = [θ1, θ2, θ3]
⊤ (where

θk = log(ck), k = 1, 2, 3), with density p(θ|y) ∝
p(y|θ)p(θ), given the prior pdf p(θ) and the likelihood

p(y|θ), in the CO and PO scenarios.

7.2 NPMC algorithm for SKMs

In this particular problem, the observations y are re-

lated to the parameters θ through the random vector
x. Indeed, the likelihood of θ has the form

p(y|θ) =

∫

p(y|x)p(x|θ)dx = Ep(x|θ)[p(y|x)],

where p(y|x, θ) = p(y|x), since the observations are

independent of the parameter θ given the population

vector x. In practice, the likelihood term p(y|θ) can-

not be evaluated exactly. A set of likelihood-free tech-
niques have been recently proposed to tackle this kind

of problems, which avoid the need to evaluate the like-

lihood function. In (Golightly and Wilkinson, 2011) a

powerful pMCMC (Andrieu et al, 2010) method was
proposed for the approximation of the posterior p(θ|y)

of the log-rate parameters in SKMs, which uses a parti-

cle filter (PF) to estimate the marginal likelihood p(y|θ)

required to compute the acceptance ratio3.

We propose to apply the NPMC method to the es-
timation of the rate parameters in SKMs. Similarly to

(Golightly and Wilkinson, 2011), we resort to a PF to

obtain an approximation of the likelihood p(y|θ), re-

quired, in our case, to compute the TIWs. We provide
details on this approximation in Appendix F.

3 Note that this approximation becomes hard when the
measurement noise variance is very small, as the weights of
the PF may degenerate.
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7.3 Simulation setup

We consider the predator-prey model of Section 7.1.

Following (Golightly and Wilkinson, 2011), the true

vector of rate parameters which we aim to estimate

has been set to c = [0.5, 0.0025, 0.3]⊤, which yields

θ = [−0.69,−5.99,−1.20]⊤. The initial populations and
the number of observations have been set to x0 =

[100, 100]⊤ and R = 50, respectively. The discretiza-

tion period is ∆ = 1 and the noise variance is σ2 = 100

(and assumed to be known). Independent uniform pri-
ors U(θk;−7, 2) are taken for each θk = log(ck), and in-

dependent Poisson priors p(xl,0) = P(xl,0; λl) are con-

sidered for the initial populations xl,0, with parameters

set to the true values, that is, λl = xl,0, l = 1, 2.

The number of particles of the PF used to compute
the likelihood approximation p̂(y|θ(i)) has been set to

J = 100. Increasing J improves the performance only

slightly, and at the expense of a significant increase of

the computational cost (this is coherent with the re-
sults, e.g., in (Wilkinson, 2011b; Golightly and Wilkin-

son, 2011), where the same value of J is selected).

Despite the low dimension of this problem (K = 3),

the IWs of the PMC scheme present severe degeneracy,

partly due to the likelihood approximation, which intro-
duces additional variations to the IWs. Thus, the origi-

nal PMC scheme without nonlinear transformations of

the IWs does not work in this scenario. The NPMC

scheme with tempering also performs poorly compared
to the method with clipping. Given the extreme varia-

tions of the IWs, it is not straightforward to select a pri-

ori a tempering sequence γℓ which provides a sufficient

ESS at all iterations. For this reason, we have focused

on the NPMC scheme with clipping, which computes
TIWs at all iterations and guarantees a baseline ESS.

7.4 Results

We have performed P = 100 independent simulation

runs of the NPMC with clipping in the CO and the

PO scenarios, with the same initial populations x0 and
different (independent) population and observation vec-

tors. Both in the CO and the PO cases, the same true

population trajectories were used, i.e., only the obser-

vations differ. The number of iterations has been set to

L = 10, the number of samples per iteration is M = 103

and the clipping parameter is MT = 100.

In the CO scenario, 5 simulation runs ended with

a numerical error or with a final NESS value close to

MT /M , and were repeated, for the same observation
vectors, with M = 2000 and MT = 200. Numerical er-

rors may occur when very few samples θ
(i)
ℓ attain a sig-

nificant likelihood, specially at the first iteration. The

NESS allows to detect whether the algorithm converges

properly, when its value increases along the iterations

beyond MT /M . Thus, the average number of samples

per iteration required in the CO case was M = 1050.

On the contrary, in the PO case all the simulation runs
ended satisfactorily with M = 1000.

In Figure 3 (left) the final values of the MSE

(MSEL,k) averaged over the parameters θk, k = 1, 2, 3,

versus the final NESS M̄neff
L obtained at each simu-

lation run are depicted, in the CO (green circles) and

the PO (blue squares) scenarios, together with the his-
togram of each variable. It can be observed that in the

CO scenario a lower MSE is attained compared to the

PO scenario, given the larger amount of data available.

However, the NESS is also lower in the first case, which

indicates more degeneracy of the IWs, again due to the
larger amount of data. The required number of sam-

ples is larger in this case, being more computationally

demanding and more sensitive to numerical issues. The

big circle and square represent two particular simula-
tion runs which attained a final MSE close to the global

average value in the CO and PO scenarios, respectively.

Figure 3 (right) depicts the final estimate of the

marginal posteriors p(θk|y) for the simulation runs rep-
resented as a big circle (CO) and square (PO) in Figure

3 (left). We have built a Gaussian approximation of the

marginal posteriors, namely p̂(θk|y) = N (θk; µk, σ2
k),

where µk and σk are the k-th mean and standard devi-

ation components of µL+1 and ΣL+1, computed as in
Eqs. (3) and (4), respectively. It can be observed that

the proposed algorithm successfully identifies the log-

rate parameters both in the CO and the PO scenarios,

and is robust to degeneracy problems that arise due
to a large number of observations (specially in the CO

case) and due to the approximation of the likelihood.

Table 6 shows the µk and σk parameters, k = 1, 2, 3,

and the MSE, for the average simulation runs repre-

sented in Figure 3 (left), and whose estimates p̂(θk|y)
are depicted in Figure 3 (right), in both scenarios.

Figure 4 (left) shows the evolution of the average

NESS in the CO (green lines) and PO (blue lines) case.

Both the NESS computed with standard IWs (Mneff
ℓ )

and TIWs (M̄neff
ℓ ) are represented, with dashed and

solid lines, respectively. Both Mneff
ℓ and M̄neff

ℓ in-

crease beyond the effect of the clipping procedure,
which indicates that the algorithm is able to generate

more representative samples as it converges. Figure 4

(right) shows the evolution of the average MSE in the

CO and PO case. The value of the MSE at ℓ = 0 corre-
sponds to the MSE obtained from the prior pdf. It can

be seen that the MSE smoothly decreases up to a low

final value, in just a few iterations.
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Fig. 3 Left : Final MSE in logarithmic scale versus the final NESS in the CO (green circles) and the PO (blue squares) scenario.
Each point in the plots corresponds to an independent simulation run. The histograms of each variable are represented in the
corresponding axis. The big circle and square represent two simulation runs with a final mean MSE close to the global average.
Right : Marginal estimated posteriors p̂(θk|y) and true values θk, k = 1, 2, 3, of the simulation runs represented as a big circle
(CO) and square (PO) in the left plot, in the CO (green line) and PO (blue line) scenario

Table 6 Parameters and MSE of the marginal posteriors p̂(θk |y) for the average simulation run in the CO and PO experiment

p̂(θ1|y) p̂(θ2|y) p̂(θ3|y)
µk σk MSE µk σk MSE µk σk MSE

CO −0.690 0.036 1.29 × 10−3 −5.932 0.033 4.62 × 10−3 −1.173 0.035 2.19 × 10−3

PO −0.704 0.056 3.25 × 10−3 −5.913 0.071 11.16 × 10−3 −1.061 0.078 26.65 × 10−3
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Fig. 4 Average NESS (left) and MSE (right) in the CO (green lines with circles) and PO (blue lines with squares) scenarios.

In the left plot Mneff
ℓ

(dashed lines) are computed from standard IWs and M̄neff
ℓ

(solid lines) are computed from TIWs. The
curves are averaged over P = 100 simulation runs. Both the NESS and the MSE converge simultaneously after 8 iterations

The results presented here for the CO scenario can

be compared, with some caution, to those obtained

in (Golightly and Wilkinson, 2011) with a pMCMC
scheme. The simulation setup is very similar, but the

synthetic datasets employed here (P = 100 indepen-

dent realizations of y) and in (Golightly and Wilkinson,

2011) are different, as well as the prior describing the
initial populations. Our simulations show that nearly

equivalent results can been attained with the NPMC

method, which involves a considerably lower computa-

tional cost. Note that the effort demanded to process

one NPMC sample θ
(i)
ℓ is approximately equivalent to

that of a single pMCMC iteration. In (Golightly and

Wilkinson, 2011) 5 × 105 pMCMC iterations were run

to compute solutions for this problem, while the NPMC

scheme has only required 104 samples overall (taking
into account all the iterations), reducing the computa-

tional cost by a factor of 50 for a similar performance.
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8 Summary

We have addressed the problem of approximating poste-

rior probability distributions by means of random sam-

ples. A recently proposed approach to tackle this prob-

lem is the population Monte Carlo method, that con-
sists in iteratively approximating a target distribution

via an IS scheme. The main limitation of this algorithm

is that is presents severe degeneracy of the IWs as the

dimension of the model, K, and/or the number of ob-
servations, N , increase. This leads to a highly varying

number of effective samples and inaccurate estimates,

unless the number of samples is extremely high (which

makes the method computationally prohibitive).

We propose to apply a simple procedure in order to

guarantee a prescribed ESS and a smooth and robust

convergence. It consists in applying nonlinear transfor-

mations to the standard IWs in order to reduce their
fluctuations and thus avoid degeneracy. It is straight-

forward to incorporate the new weight computation

scheme into any existing method based on IS. It is possi-

ble, for example, to use TIWs within the SMC samplers

of (Del Moral et al, 2006), leading to a complete family
of algorithms, of which the NPMC method introduced

in the present paper would be just an instance.

In order to illustrate the application of the proposed
technique, we have applied it to two examples of differ-

ent complexity. The first example is a simple GMM,

which allows to get insight of the performance of the

standard PMC scheme, the degeneracy problem and

the behavior of the proposed algorithm. We have pro-
vided extensive simulation results that show how the

proposed NPMC scheme can greatly improve the per-

formance of the standard method.

Additionally, we have tackled the problem of esti-

mating the set of constant (and random) rate parame-

ters of a SKM. Even for the relatively simple predator-

prey model that we have studied, this is significantly

more complex than the GMM example. The NPMC
method yields satisfactory results also in this scenario.

The Matlab code used to generate the pre-

sented simulation results is publicly available at
http://www.tsc.uc3m.es/∼jmiguez/npmc.zip.

The convergence of standard PMC algorithms is of-

ten justified by the asymptotic convergence of IS (with

respect to the number of samples). The NPMC scheme
modifies the IWs and, hence, the standard theory of IS

cannot be applied directly. To address this difficulty, we

have analyzed the convergence of the approximations

of integrals computed using clipped TIWs and proved
that they converge a.s., similar to the results available

for standard IS. We have also quantified the distortion

introduced when using tempered TIWs.

A Connection with SMC samplers

The description of the SMC sampling methodology is adapted
from Del Moral et al (2006). The goal is to approximate a
sequence of probability distributions with densities πℓ(θ), ℓ =
1, . . . , L. In order to be able to use a sequential importance
sampling (SIS) algorithm for this purpose, let us define the
artificial joint target density

αℓ(θ1:ℓ) = πℓ(θℓ)
ℓ−1Y
r=1

br(θr |θr+1), (16)

where br(θr|θr+1) is the density of an arbitrary backward ker-
nel. By construction, the joint pdf in (16) has πℓ(θℓ) as a
marginal, i.e.,Z

· · ·
Z

πℓ(θℓ)
ℓ−1Y
r=1

br(θr|θr+1)dθℓ−1 · · · dθ1 = πℓ(θℓ).

If we choose a sequence of forward kernels with densities
f1(θ1), fr(θr|θr−1), r = 2, . . . , L, it is possible to run a stan-
dard SIS algorithm (Doucet et al, 2000) to approximate the
measure αℓ(θ1:ℓ)dθ1:ℓ (and its marginals). In particular, a
simple algorithm would proceed as follows:

– Initialization: draw θ
(i)
1 from f1(θ1), i = 1, . . . , M , and set

the initial (normalized) IWs as w
(i)
1 ∝ π1(θ

(i)
1 )/f1(θ

(i)
1 ).

Resample to obtain an unweighted set {θ̃(i)
1 }M

i=1.

– Sequential step: at the ℓ-th iteration,

– draw θ
(i)
ℓ

from fℓ(θℓ|θ̃
(i)
ℓ−1), i = 1, ..., M ;

– compute (unnormalized) weights

w
(i)∗
ℓ

=
πℓ(θ

(i)
ℓ

)bℓ−1(θ̃
(i)
ℓ−1|θ

(i)
ℓ

)

πℓ−1(θ̃
(i)
ℓ−1)fℓ(θ

(i)
ℓ

|θ̃(i)
ℓ−1)

, (17)

– and resample according to the normalized weights

w
(i)
ℓ

=
w

(i)∗
ℓP

M
j=1

w
(j)∗
ℓ

to obtain the set {θ̃(i)
ℓ }M

i=1.

In (Del Moral et al, 2006) resampling is performed only when
the ESS falls below some threshold, but this is not relevant
for our discussion (hence we assume that resampling is per-
formed at every sequential step). After the ℓ-th step, the mea-
sure πM

ℓ
(dθℓ) = 1

M

PM
i=1 δ

θ̃
(i)
ℓ

(dθℓ) is an approximation of

πℓ(θℓ)dθℓ (Del Moral et al, 2006).
We address the question of whether a NPMC algorithm

with tempering can be obtained as a particular case of the
SMC sampler above by a proper choice of the backward and
forward kernels. The answer is partially positive. Indeed, con-
sider the generic weight function in Eq. (17). If we select a
sequence of exponents 0 < γ1 < γ2 < . . . < γL = 1 and define
πℓ(θℓ) = π(θℓ)γℓ , then we can equate

IW ≡ π(θℓ)
γℓbℓ−1(θℓ−1|θℓ)

π(θℓ−1)γℓ−1fℓ(θℓ|θℓ−1)
=

π(θℓ)
γℓ

fℓ(θℓ|θℓ−1)γℓ
≡ TIW,

and solve for the backward kernel density, namely

bℓ−1(θℓ−1|θℓ) ∝ π(θℓ−1)
γℓ−1fℓ(θℓ|θℓ−1)1−γℓ . (18)

However, it is not possible to make Eq. (18) hold for any pro-
posal scheme and, in particular, it cannot hold for the type of
proposals introduced in Section 4.1. To be precise, the back-
ward kernel density bℓ(θℓ−1|θℓ) can be chosen as in Eq. (18)
if the i-th sample in the ℓ-th iteration is drawn conditional
on i-th sample from the iteration ℓ−1. This is the usual case,
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e.g., in particle filtering applications where the variables of
interest are dynamic and a forward kernel density is actually
part of the model. Note that fℓ plays the role of the proposal
density qℓ in Section 4. If fℓ(θℓ|θℓ−1) = fℓ(θℓ) = qℓ(θℓ) is de-

signed simply from the statistics of the population {θ̃(i)
ℓ−1}M

i=1,
then the backward kernel becomes independent of the forward
kernel, i.e.,

bℓ−1(θℓ−1|θℓ) ∝ π(θℓ−1)γℓ−1qℓ(θℓ)
1−γℓ ∝ π(θℓ−1)

γℓ−1

and the weight function of the NPMC algorithm with tem-
pering cannot be reproduced.

Very often, in the PMC framework qℓ is selected
by matching the empirical moments of the population

{θ̃(i)
ℓ−1}M

i=1, and this is actually the case in Section 4, where

qℓ(θℓ) is Gaussian with mean µℓ = 1
M

PM
i=1 θ̃

(i)
ℓ−1 and covari-

ance matrix Σℓ = 1
M

PM
i=1(θ̃

(i)
ℓ−1 − µℓ)(θ̃

(i)
ℓ−1 − µℓ)

⊤.

B Proof of Lemma 1

As a first step, we seek a tractable upper bound for the dif-
ference

|(f, π̄M ) − (f, π̌M )| =

����� MX
i=1

f(θ(i))(w̄(i) − w̌(i))

����� , (19)

where

w̄(i) =
(ϕM ◦ g)(θ(i))PM

j=1(ϕM ◦ g)(θ(j))
, w̌(i) =

(ϕM ◦ g)(θ(i))PM
j=1 g(θ(j))

(20)

and (ϕM ◦ g)(θ) = ϕM (g(θ)) denotes the composition of the
functions ϕM and g. Moreover, the constants in the denomi-
nators of the weights can be written as integrals with respect
to the random measure

qM (dθ) =
1

M

MX
j=1

δθ(j) (dθ), (21)

namely,

MX
j=1

(ϕM ◦ g)(θ(j)) = M(ϕM ◦ g, qM ) (22)

and

MX
j=1

g(θ(j)) = M(g, qM ). (23)

Substituting (20), (22) and (23), into (19) yields, after
straightforward manipulations,

|(f, π̄M ) − (f, π̌M )| =����� 1

M

MX
i=1

f(θ(i))(ϕM ◦ g)(θ(i))
(g, qM ) − (ϕM ◦ g, qM )

(ϕM ◦ g, qM )(g, qM )

����� . (24)

A useful upper bound for the difference of integrals follows
quite easily from (24). In particular, note that |f(θ(i))(ϕM ◦
g)| ≤ ‖f‖∞‖g‖∞, since f, g ∈ B(RK) and ϕM ◦ g ≤ g, while
the latter inequality also implies that (ϕM ◦ g, qM )(g, qM ) ≥
(ϕM ◦ g, qM )2. Also note that, from the definition of ϕM ,

|(g, qM ) − (ϕM ◦ g, qM )| ≤

1

M

MTX
k=1

|g(θ(ik)) − (ϕM ◦ g)(θ(ik))| ≤ 2MT ‖g‖∞
M

. (25)

As a result, we obtain

|(f, π̄M ) − (f, π̌M )| ≤ 2‖f‖∞‖g‖2∞MT

M(ϕM ◦ g, qM )2
. (26)

Let c1 > 0 be some arbitrary real constant. From (26),

P

�
|(f, π̄M ) − (f, π̌M )| ≤ MT

M
c1

�
≥

P

�
2‖f‖∞‖g‖2∞MT

M(ϕM ◦ g, qM )2
≤ MT

M
c1

�
. (27)

If we choose

c1 =
2‖f‖∞‖g‖2∞�

1
a
− 1√

2

�2
(g, q)2

, (28)

where 1 < a <
√

2 and (g, q) ∝
R

π(θ)dθ > 0, then substituting
(28) into the right hand side of (27) yields

P

�
2‖f‖∞‖g‖2∞MT

M(ϕM ◦ g, qM )2
≤ MT

M
c1

�
=

P

(
(ϕM ◦ g, qM )2 ≥

�
1

a
− 1√

2

�2

(g, q)2
)

=

P

�
(ϕM ◦ g, qM ) − 1

a
(g, q) ≥ − 1√

2
(g, q)

�
=

P

�
M(ϕM ◦ g, qM ) − M

a
(g, q) ≥ − M√

2
(g, q)

�
, (29)

where the second equality holds because 1
a
− 1√

2
> 0.

Next, consider the expectations Eq[(g, qM )] = (g, q) and
Eq[(ϕM ◦g, qM )]. Since, |(ϕM ◦g, qM )−(g, qM )| ≤ 2MT ‖g‖∞/M
(see Eq. (25)), it follows that���Eq[(ϕ

M ◦ g, qM )] − Eq[(g, qM )]
��� ≤

Eq

h
|(ϕM ◦ g, qM ) − (g, qM )|

i
≤ 2MT ‖g‖∞

M
.

Therefore, since we have assumed that limM→∞
MT
M

= 0,
there exists Ma such that, for all M > Ma,

Eq[(ϕ
M ◦ g, qM )] >

1

a
Eq[(g, qM )] =

1

a
(g, q), (30)

and combining Eq. (29) with the inequality (30) we obtain
that

P

�
2‖f‖∞‖g‖2∞MT

M(ϕM ◦ g, qM )2
≤ MT

M
c1

�
≥

P

�
M(ϕM ◦ g, qM ) − MEq[(ϕM ◦ g, qM )] ≥ − M√

2
(g, q)

�
. (31)

Since M(ϕM ◦ g, qM ) =
PM

i=1 ϕM (g(θ(i))) is the sum of
M independent and bounded random variables, each of them
taking values within the interval (0, ‖g‖∞), it is straightfor-
ward to apply Hoeffding’s tail inequality (Hoeffding, 1963)
(see also, e.g., (Boucheron et al, 2004)) to obtain a lower
bound on (31), namely

P

�
M(ϕM ◦ g, qM ) − MEq

h
(ϕM ◦ g, qM )

i
≥ − M√

2
(g, q)

�
≥

1 − exp

�
− (g, q)2

‖g‖2∞
M

�
. (32)

Substituting (32) back into (31), (29) and (27) yields the
desired result,

P

�
|(f, π̄M ) − (f, π̌M )| ≤ MT

M
c1

�
≥ 1 − exp

�
−c′1M

	
,

with c′1 = (g,q)2

‖g‖2
∞

.
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C Proof of Lemma 2

The argument is similar to that of the proof of Lemma 1.
Recalling Eqs. (20), (21) and (23) in Appendix B as well as

the form of the standard normalized weights, w(i) = g(θ(i))

M(g,qM )
,

it is straightforward to show that

|(f, π̌M ) − (f, πM )| =

1

M(g, qM )

������MTX
k=1

f(θ(ik))
h
(ϕM ◦ g)(θ(ik)) − g(θ(ik))

i������ ,
which readily yields the upper bound

|(f, π̌M ) − (f, πM )| ≤ 2‖f‖∞‖g‖∞MT

M(g, qM )
. (33)

Let c2 > 0 be some arbitrary real constant. From (33),

P

�
|(f, π̌M ) − (f, πM )| ≤ MT

M
c2

�
≥

P

�
2‖f‖∞‖g‖∞MT

M(g, qM )
≤ MT

M
c2

�
(34)

and if we choose c2 = 2‖f‖∞‖g‖∞
(1− 1√

2
)(g,q)

, (recall that (g, q) ∝R
π(θ)dθ > 0) then

P

�
2‖f‖∞‖g‖∞MT

M(g, qM )
≤ MT

M
c2

�
=

P

�
(g, qM ) ≥ (1 − 1√

2
)(g, q)

�
=

P

�
M(g, qM ) − M(g, q) ≥ − M√

2
(g, q)

�
. (35)

Since (g, q) = Eq[(g, qM )] and (g, qM ) is the sum of M
independent, and bounded, random variables taking values
within the interval [0, ‖g‖∞] (recall that g ≥ 0), we can readily
apply Hoeffding’s tail inequality (Hoeffding, 1963) on Eq. (35)
to obtain

P

�
M(g, qM ) − M(g, q) ≥ − M√

2
(g, q)

�
≥ 1−exp

�
− (g, q)2

‖g‖2∞
M

�
.

(36)

Substituting (36) back into (35) and (34) yields the desired
result,

P

�
|(f, π̌M ) − (f, πM )| ≤ MT

M
c2

�
≥ 1 − exp

�
−c′2M

	
,

where c′2 = (g,q)2

‖g‖2
∞

> 0.

D Proof of Lemma 3

The first part of Lemma 3 follows from the combination of
Lemmas 1 and 2. We first note that, from Lemma 1,

P

�
|(f, π̄M ) − (f, π̌M )| > c1

MT

M

�
< exp{−c′1M} (37)

for sufficiently large M , while Lemma 2 implies

P

�
|(f, π̌M ) − (f, πM )| > c2

MT

M

�
< exp

�
−c′2M

	
, (38)

where c2 = c′2 = (g,q)2

‖g‖2
∞

. Let c = c1 + c2. Then, since

|(f, π̄M )− (f, πM )| ≤ |(f, π̄M )− (f, π̌M )|+ |(f, π̌M )− (f, πM )|,

we trivially obtain that

P

�
|(f, π̄M ) − (f, πM )| > c

MT

M

�
≤

P

�
|(f, π̄M ) − (f, π̌M )| + |(f, π̌M ) − (f, πM )| > c

MT

M

�
. (39)

However, if |(f, π̄M )− (f, π̌M )|+ |(f, π̌M )− (f, πM )| > c MT
M

is
true, then

|(f, π̄M ) − (f, π̌M )| > c1
MT

M
or |(f, π̌M ) − (f, πM )| > c2

MT

M
,

or both jointly, are true. Therefore,

P

�
|(f, π̄M ) − (f, π̌M )| + |(f, π̌M ) − (f, πM )| > c

MT

M

�
≤ P

�
|(f, π̄M ) − (f, π̌M )| > c1

MT

M

�
+P

�
|(f, π̌M ) − (f, πM )| > c2

MT

M

�
≤ exp

�
−c′1M

	
+ exp

�
−c′2M

	
= 2exp

�
− (g, q)2

‖g‖2∞
M

�
, (40)

for sufficiently large M , where the second inequality follows
from (37) and (38), and the equality is due to the fact that
c′1 = c′2.

Combining (39) and (40) yields the first part of Lemma

3, with c′ = (g,q)2

‖g‖2
∞

.

The second part of Lemma 3 follows from a standard
Borel-Cantelli argument. Indeed, let EM be the event in which
|(f, π̄M ) − (f, πM )| > c MT

M
holds true. From the first part of

the Lemma,

P{EM} < 2 exp{−c′M},

with c′ > 0, for sufficiently large M (specifically, for all M >
Ma, with Ma as in the proof of Lemma 1). Therefore,

∞X
M=1

P{EM} ≤ Ma +
∞X

M=Ma+1

exp{−c′M} < ∞,

because Ma < ∞ and
P∞

M=Ma+1 exp{−c′M} < ∞. As
a consequence (see, e.g., (Williams, 1991, Theorem 2.7)),
P{limsup EM} = 0, which implies that

lim
M→∞

|(f, π̄M ) − (f, πM )| = 0 a.s.

⊓⊔

E Proof of Proposition 1

Let us introduce a new set of (unnormalized) bridge weights
of the form

w̆(i) =
g(θ(i))γPM
j=1 g(θ(j))

, i = 1, ...,M, (41)

and the corresponding (unnormalized) measure π̆M (dθ) =PM
i=1 w̆(i)δθ(i)(dθ). Using π̆M , the absolute difference
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|(f, πM ) − (f, π̄M )| can be upper bounded by way of the tri-
angular inequality

|(f, πM )− (f, π̄M )| ≤ |(f, πM )− (f, π̆M )|+ |(f, π̆M )− (f, π̄M )|.
(42)

In the sequel, we manipulate the two terms on the right hand
side of (42) to show that (13) holds.

From the definition of the bridge weights in (41), we ob-
tain that

(f, πM ) − (f, π̆M ) =
MX

i=1

f(θ(i))
g(θ(i)) − g(θ(i))γPM

j=1 g(θ(j))

=
MX

i=1

f(θ(i))
g(θ(i))(1 − g(θ(i))γ−1)PM

j=1 g(θ(j))

= (f(1 − gγ−1), πM ), (43)

where the last equality follows trivially if we consider the
standard weight function w(i) = g(θ(i))/

PM
j=1 g(θ(j)).

As for the second term on the right hand side of (42),
the definitions of w̄(i) and w̆(i) in (12) and (41), respectively,
yield

(f, π̆M ) − (f, π̄M ) =
MX

i=1

f(θ(i))g(θ(i))γ

×
 

1PM
j=1 g(θ(j))

− 1PM
j=1 g(θ(j))γ

!
. (44)

Some straightforward manipulations show that the difference
of fractions above can be rewritten as

1PM
j=1 g(θ(j))

− 1PM
j=1 g(θ(j))γ

=PM
r=1 g(θ(r))

�
g(θ(r))γ−1 − 1

�PM
j=1 g(θ(j))γ

PM
k=1 g(θ(k))

=
(gγ−1 − 1, πM )PM

j=1 g(θ(j))γ
, (45)

where we have used, again, the definition of the standard
weights w(i) = g(θ(i))/

PM
j=1 g(θ(j)). Substituting (45) into

(44), and using the definition of TIWs given by (12), yields

(f, π̆M ) − (f, π̄M ) =
MX

i=1

f(θ(i))w̄(i)(gγ−1 − 1, πM )

= (f, π̄M )(gγ−1 − 1, πM ). (46)

Finally, substituting (46) and (43) into (42) we arrive at

|(f, πM ) − (f, π̄M )| ≤ |(f(1 − gγ−1), πM )|
+ |(f, π̄M )||(gγ−1 − 1, πM )|,

and the proof concludes by simply noting that |(f, π̄M )| ≤
‖f‖∞ and |(gγ−1 − 1, πM )| = |(1 − gγ−1, πM )|.

F Estimating the likelihood p(y|θ) via particle

filtering

In this appendix we provide details on the approximation of
the likelihood p(y|θ). In order to apply the algorithm below,
one should recall that the dimension of the observation vector
y varies from the CO scenario (2R × 1) to the PO scenario
(R × 1), since in the latter case the observations are scalars,
i.e., yn = yn ∈ R.

For a given vector of log-rate parameters θ, the following
standard PF (see, e.g., Doucet et al (2001)) is run.

Initialization (n = 0):

Draw a collection of J samples {x(j)
0 }J

j=1 ∼ p(x0).

Recursive step (n = 1, . . . , R):

1. Draw {x(j)
n }J

j=1 ∼ p(xn|x(j)
n−1, θ) using the Gillespie algo-

rithm.
2. Compute normalized IWs ω

(j)∗
n = p(yn|x

(j)
n ), ω

(j)
n =

ω
(j)∗
n /

PJ
l=1 ω

(l)∗
n , j = 1, . . . , J .

3. Resample J times with replacement from {x(j)
n }J

j=1 ac-

cording to the weights {ω(j)
n }J

j=1.

At every time step, the predictive pdf p(yn|y1:n−1, θ) can
be approximated as

p̂(yn|y1:n−1, θ) =
1

J

JX
j=1

p(yn|x
(j)
n ),

and the full likelihood p(y|θ) can be approximated in turn as

p̂(y|θ) =
RY

n=1

p̂(yn|y1:n−1, θ).

See, e.g., (Máız et al, 2012) for an analysis of the convergence
of this approximation.
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