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Abstract. Functional response estimation and population tracking in predator-
prey systems are critical problems in ecology. In this paper we consider a
stochastic predator-prey system with a Lotka-Volterra functional response and
propose a particle filtering method for: (a) estimating the behavioral param-
eter representing the rate of effective search per predator in the functional

response and (b) forecasting the population biomass using field data. In par-

ticular, the proposed technique combines a sequential Monte Carlo sampling
scheme for tracking the time-varying biomass with the analytical integration

of the unknown behavioral parameter. In order to assess the performance of
the method, we show results for both synthetic and observed data collected
in an acarine predator-prey system, namely the pest mite Tetranychus urticae

and the predatory mite Phytoseiulus persimilis.
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1. Introduction. Biological control strategies are based on the release of agents
to control plant pest. These strategies are difficult to establish with scientific rigor
because essential, but not always available, twofold information is required: the
current abundance of pest population and properties of the predator functional
response, i.e., the per capita rate of predation. Furthermore, the decision on time
and amount of predator released has to be taken into the dynamical framework of
predator-prey interaction.

This complexity suggests that definition and evaluation of biological control
strategies may be done by modelling tools. Such tools can predict population
abundance and damage level, as well as efficacy and time required by the preda-
tor for prey control. Two major components characterize predator-prey dynamics,
the numerical response (i.e., prey growth) and the functional response. The first
component can be easily estimated starting from biological data at individual level
made available by the classical experimental approach based on the analysis of the
life-history strategies. Experimental approaches have also been used for the esti-
mation of the functional form and parameters of the predator functional response.
However, it has been recognized that experimental approaches encounter important
limitations due to the artificial experimental set-up conditioning the performances
of the predator [44]. To overcome these limitations methodologies for functional
response estimation based on time-series data from field survey have been proposed
[29, 23].

Gilioli et al. [23, 24] presented a methodology which offers the advantage of
obtaining parameter estimation in linear and non-linear functional responses from
field data with limited assumptions on the properties of the predator-prey dynamics
(e.g., the zero abundance data can not be used). However, the method requires
the consideration of an entire dataset of populations dynamics and can be applied
only at the end of the interaction between the populations, or after a certain time
including, at least, an entire cycle of predator-prey interaction. This represents an
important limitation in the practical implementation of modelling tools for decision
support in the design of strategies of predator release.

The availability of methods for the estimation of parameters in functional re-
sponse models during predator-prey interaction allows to continuously improve their
reliability, to the extent that available information may greatly improve the possi-
bility to use predator-prey models for decision support in biological control. These
methods are suitable for the adaptive management framework, i.e., a systematic,
cyclic process for continually improving management policies and practices (tactics,
strategies) based on lessons learnt from operational activities [13, 41, 23]. Further-
more, the advantage of the adaptive approach is not only the improvement of the
estimate according to the level of information, but also the possibility of an easy
adaptation of the estimation procedure to the specific case of concern (e.g., differ-
ences in host plant species, in plants spatial arrangement, and in environmental
conditions).

In this paper we propose a method to deal with the problem of inferring feeding
rate indirectly from sampling population dynamics data. The parameter of the
functional response is estimated during the establishment and the time evolution
of population interactions. The proposed methodology is based on the description
of the population dynamics through a stochastic predator-prey model of Lotka-
Volterra type, coupled with a functional response parameter estimation based on
a set of field data, as suggested in [23]. The choice of the Lotka-Volterra model is
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justified by the advantage offered by its conditionally-linear structure, which allows
the application of an efficient parameter estimation method.

The estimation problem herein addressed can be considered as part of the class
of parameter estimation problems in discretely observed diffusion processes, which
is a topic widely discussed in the literature [37, 20, 1, 6, 43, 39, 42]. In recent
years, this problem has been tackled in the case of few available observations con-
sidering the introduction of latent data [21, 22, 26, 23, 24]. In particular, Bayesian
approaches based on MCMC algorithms have been presented in [23, 24] to deal with
stochastic population dynamics using a small set of field data. The key ingredient
of the approach proposed in this paper is a sequential Monte Carlo (SMC) method
[33, 16, 15], or particle filters (PFs), a technique that has been less commonly used
in ecology compared to MCMC algorithms. PFs are recursive Monte Carlo algo-
rithms for the approximation of the sequence of posterior probability distributions
of the variables (and, sometimes, the parameters) of interest in state-space ran-
dom dynamic models. The initial application of PFs in ecology has been related
to the prediction of ecosystem state variables [17], while more recent works advo-
cate the use of PFs to jointly estimate the time-varying state variables and the
static behavioral parameters. For estimating the latter parameters, a PF based on
augmenting the system state with the static parameters is proposed in [19], while
in [18] an iterative state-augmented particle filter is used to jointly estimate the
motion parameters and the state. Knape and De Valpine [31] propose an MCMC
algorithm combined with sequential Monte Carlo techniques (PFMCMC) that ex-
plores the hidden states using PFs, while the process and observation parameters
are estimated using an MCMC algorithm. The recently proposed particle MCMC
(PMCMC) methodology [3] has been applied to a related problem (the estimation
of the constant reaction rates in a stochastic kinetic model) in [27]. PMCMC is
a computationally intensive MCMC-type of algorithm that uses PFs as auxiliary
tools to build up the proposal kernels.

In all these works [17, 19, 18, 31], the problem of estimating the (static) pa-
rameters in the dynamic model is addressed by Monte Carlo sampling, i.e., they
are handled in the same manner as the (time varying) state variables. However, it
is known from the particle filtering literature (see, e.g., [4, 8]) that this approach
has serious limitations and, at its best, it introduces additional Monte Carlo vari-
ance in the estimates computed using the empirical distributions produced by the
PF. In this paper, we adopt the stochastic predator-prey model studied in [23] and
show how a PF can be designed for the joint estimation of the dynamical popu-
lation biomass and the feeding rate, an unknown parameter which determines the
functional response of the predator to prey abundance. The key feature of the pro-
posed method is that Monte Carlo sampling is only necessary on the space of the
dynamic variables (the prey and predator biomass) while the functional-response
parameter is handled analytically. This holds because of the conditionally linear
structure of the Lotka-Volterra model1, and the resulting algorithm is an example
of Rao-Blackwellization in particle filtering (see, e.g., [16, 8], also known as mix-
ture Kalman filtering [11]). Compared to standard PFs, this approach reduces the
variance of the estimators.

We have applied the proposed technique on both synthetic and field data rela-
tive to an acarine predator-prey system relevant to biological control, the pest mite

1The model is linear on the feeding rate parameter conditional on the population biomass.
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Tetranychus urticae and the predator mite Phytoseiulus persimilis. Numerical re-
sults show an improved accuracy in the biomass tracking compared to the MCMC
algorithm applied in [23] over the same field dataset.

The rest of the paper is organized as follows. In Section 2 we describe the
stochastic predator-prey model of interest and rewrite it as a state-space model.
The Rao-Blackwellized PF for joint biomass tracking and parameter estimation is
introduced in Section 3. In Section 4 we apply the proposed method to synthetic
data and field data and carry out the comparison with the method of [23]. Finally,
a summary and some conclusions are presented in Section 5.

2. Dynamic model.

2.1. Lotka-Volterra stochastic dynamic model. We investigate a stochastic
Lotka-Volterra type of model for the dynamics of a prey population and a predator
population at continuous time t. The model adopts a logistic form for the growth
of the prey, so as to take into account intra-specific competition. It is based on [23]
and it can be described as{

dxt = [rxt(1− xt)− q0xtyt]dt− σxtytdw(1)
t + εxtdw

(2)
t ,

dyt = [cq0xtyt − uyt]dt+ cσxtytdw
(1)
t + ηytdw

(3)
t ,

(1)

where

• xt and yt are the biomass of prey and predator, respectively, at time t per
habitat unit normalized with respect to the prey carrying capacity per habitat
unit (plant);

• r is the specific growth rate of the prey;
• c is the maximum production rate of the predator;
• u is the specific loss rate of the predator due to natural mortality;
• q0 is a positive constant representing the efficiency of the predation process

[7].

We consider random errors due to demographic stochasticity [10, 36] (modeled

by the noise process w
(1)
t ) and environmental stochasticity [36] (modeled by the

noise processes w
(2)
t and w

(3)
t ). Moreover, we assume that w

(1)
t , w

(2)
t and w

(3)
t

are independent Wiener processes, whereas the parameters σ, ε and η have been
estimated by a least-squares method in [23] using an experimental dataset different
from the field data studied in Section 4.2.

The lumped parameters r, c, u are species-specific and have been estimated in
[7]. Thus, the behavioral parameter q0 in the functional response q0xtyt is the
only unknown variable and has to be estimated. This is exactly the same problem
addressed in [23]. The values used for σ, ε, η, r, c and u are given explicitly in Section
4.

In order to apply the particle filtering methodology, we discretize Eq. (1) using
the Euler scheme and obtaining the following stochastic discrete-time model

xk+1 = xk + τk [rxk(1− xk)− q0xkyk]− σxkyt∆w(1)
k+1 + εxk∆w

(2)
k+1,

yk+1 = yk + τk [cq0xkyk − uyk] + cσxkyk∆w
(1)
k+1 + ηyk∆w

(3)
k+1,

(2)

where k = 0, 1, ..., S denotes the discrete time instants, S the final time instant of the
studied time period, and τk is the time step used in the Euler approximation. The

increments of the Wiener processes, ∆w
(1)
k+1, ∆w

(2)
k+1 and ∆w

(3)
k+1 (where ∆w

(i)
k+1 =
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w(i)((k + 1)τk) − w(i)(kτk), i = 1, 2, 3), are independent Gaussian variables with
zero mean and variance τk.

Next, we define a state-space model with the unknown parameter q0 as the single
state “variable” (Section 2.2) and we extend this state-space model to put it into a
format adequate to track the biomass variables xk+1 and yk+1, with q0 still unknown
(Section 2.3).

2.2. State-space Markov model. Without loss of generality, in the sequel we
assume τk = τ for any k for the sake of clarity in the notation. We define the biomass
increments ∆xk+1 = xk+1 − xk and ∆yk+1 = yk+1 − yk, where k = 0, ..., S − 1.
Hence, the dynamic model of Eq. (2) can be rewritten as

∆xk+1 = τrxk(1− xk)− τxkykq0 − σxkyk∆w
(1)
k+1 + εxk∆w

(2)
k+1,

∆yk+1 = −τuyk + τcxkykq0 + cσxkyk∆w
(1)
k+1 + ηyk∆w

(3)
k+1,

(3)

or, in a vectorial compact form,

∆k+1 = hk+1 + gk+1q0 + Qk+1wk+1 (4)

where

∆k+1 =

[
∆xk+1

∆yk+1

]
, wk+1 =

∆w
(1)
k+1

∆w
(2)
k+1

∆w
(3)
k+1

 ,
hk+1 =

[
τrxk(1− xk)
−τuyk

]
, gk+1 =

[
−τxkyk
τcxkyk

]
, and (5)

Qk+1 =

[
−σxkyk εxk 0
cσxkyk 0 ηyk

]
.

The model in Eq. (4) is nonlinear in the biomass variables xk and yk, but
it is conditionally linear in q0 (given the sequences x0:k+1 = {x0,x1, ...,xk+1} and
y0:k+1 = {x0,y1, ...,yk+1}). In this way, after defining zk+1 = ∆k+1−hk+1, we can
rewrite Eq. (4) as a linear-Gaussian state-space model whose single state variable
is the parameter of interest q0 and zk+1 is the observation vector, namely

q0,k+1 = q0,k,
zk+1 = gk+1q0,k+1 + Qk+1wk+1.

(6)

Eq. (6) defines q0 as a static variable over time. The conditional density of zk+1

(or the likelihood of q0,k+1) is Gaussian, namely2

p(zk+1|q0,k+1) = N (zk+1; gk+1q0,k+1, τQk+1Q
>
k+1). (7)

where N (α;µ,C) denotes the multivariate Gaussian probability density function
(pdf) of α with mean vector µ and covariance matrix C.

Due to the linear structure in q0 of the state-space model and the Gaussian
likelihood, we can apply the Kalman filter [30, 2] to exactly compute the posterior
distribution of q0, denoted with p(q0|z1:S). Indeed, if we assume that q0 is a priori

2We use p to denote probability functions, including densities and masses. The notation is
argument-wise. For example, if x and y are continuous random variables, then p(x) and p(y)
denote their probability density functions, possibly different. If x is a discrete random variable,
then p(x) denotes its probability mass function. Conditional densities and masses are indicated

in the obvious way, e.g., p(x|y). This notation is common in Bayesian analysis and in the particle
filtering literature.
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Table 1. Kalman filter for the computation of p(q0|z1:k) =
N (q0; q̂0,k, Pk). The Kalman gain sk+1 is a 2 × 1 vector. The
superscript > denotes transposition.

Initialization. Let p(q0) = N (q0; q̂0,0, P0).
Recursive step. For every k ≥ 0:
1. Compute the Kalman gain: s>k+1 = Pkg>k+1(gk+1Pkg>k+1+τQk+1Q

>
k+1)−1

2. Update the posterior mean: q̂0,k+1 = q̂0,k + s>k+1(zk+1 − gk+1q̂0,k)
3. Update the posterior variance: Pk+1 = Pk − s>k+1gk+1Pk

Gaussian, with mean q̂0,0 and variance P0, i.e., p(q0) = N (q0; q̂0,0, P0), then the
posterior density at time k is also Gaussian,

p(q0|z1:k) = N (q0; q̂0,k, Pk),

where q̂0,k =
∫
q0 p(q0|z1:k) dq0 and Pk =

∫
(q0− q̂0,k)2 p(q0|z1:k) dq0 are the poste-

rior mean and variance of the random parameter, respectively. The equations for the
sequential computation q̂0,k and Pk are given explicitly in Table 1 for completeness.

2.3. Nonlinear gamma state-space model. Assume that q0 is known and the
goal is the estimation of the biomass variables, xk+1 and yk+1. It turns out conve-
nient to consider the nonlinear state-space model, derived from Eq. (2)

bk+1 ∼ p(bk+1|bk, q0),
ok+1 ∼ p(ok+1|bk+1),

(8)

where bk+1 =

[
xk+1

yk+1

]
is the state variable vector which collects the prey and

predator biomass, ok+1 =

[
oxk+1

oyk+1

]
is the vector of noisy biomass observations,

p(bk+1|bk, q0) describes the conditional pdf of the state variables (in particular, we
assume that the dynamics of xk and yk is defined as in Eq. (2)) and p(ok+1|bk+1)
is the conditional density of the observations given the biomass of each population.

The state dynamics can be compactly expressed by the multivariate Gaussian
pdf3

p(bk+1|bk, q0) = N (bk+1; bk + hk+1 + gk+1q0, τQk+1Q
>
k+1) (9)

where the mean depends on the behavioral parameter q0, while hk+1, gk+1 and
Qk+1 are quantities that depend on the biomasses at time k, as shown in Eq. (5).

We assume that the conditional density of the observations is gamma. In par-
ticular, if we denote with Γ(α;m, v) the gamma pdf of variable α, characterized by
the mean m and the variance v, then

p(ok+1|bk+1) = Γ(oxk+1;xk+1, d
2
x)× Γ(oyk+1; yk+1, d

2
y), (10)

where the marginal variances, d2
x and d2

y, have been fitted to the measurement-
variance of experimental data (Section 4.2). We have modeled the conditional

3Let us remark that the density p(bk+1|bk, q0) only describes the dynamics of bk when q0
is available, otherwise the process bk is not Markov. In particular, if q0 is unknown, then
p(bk+1|b0:k) 6= p(bk+1|bk, q0).
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density of the observations as gamma to enforce that both oxk+1 and oyk+1 be non-
negative, since the biomass of the species can not be negative in the real world.
Other models, e.g., truncated Gaussian distributions, could have been adopted,
but possibly at the expense of a higher computational complexity of the inference
algorithms.

When q0 is known, the model in Eq. (8) enables the derivation of standard
particle filtering algorithms for tracking the biomass of each population, while, in
combination with Eq. (6), it enables the derivation of efficient algorithms for joint
parameter estimation and biomass tracking. The different possibilities are explored
in Section 3.

3. Computational inference. We propose to apply a PF to approximate the
sequence of posterior probability distributions of the population biomass given the
observations, namely the distributions associated with the densities p(bk|o1:k), k =
1, 2, ..., S. If q0 is known, this can be done running a standard particle filtering
technique on the gamma state-space model of Section 2.3. When q0 is unknown, we
derive algorithms that only demand Monte Carlo sampling in the (2-dimensional)
space of bk, while the behavioral parameter q0 is integrated out analytically, both
with complete and missing observations. The final aim is to improve the estimation
of q0 obtained in [23] while simultaneously tracking the biomass vector bk+1 with
missing observations. In the rest of this Section we first introduce the notion of
a stochastic filter and then proceed to derive practical implementations using the
particle filtering methodology.

3.1. Stochastic filtering. Assume that the parameter q0,k = q0 is known for any
k. From a Bayesian point of view, all the information required for inference on the
biomass in bk is given by the posterior distribution with density p(bk+1|o1:k+1, q0),
where o1:k+1 is the sequence of observations collected up to time k+1. Using Bayes’
theorem, the posterior pdf can be decomposed as

p(bk+1|o1:k+1, q0) ∝ p(ok+1|bk+1) p(bk+1|o1:k, q0), (11)

where the proportionality constant (i.e., p(ok+1|o1:k, q0)), which is independent of
bk+1, is omitted. The likelihood p(ok+1|bk+1) is given by the state-space model
and

p(bk+1|o1:k, q0) =

∫
p(bk+1|bk, q0) p(bk|o1:k, q0) dbk (12)

is the predictive pdf of the variables in bk+1 given the observations o1:k and q0.
The optimal stochastic filter is a device that combines Eqs. (11) and (12) to

recursively compute the sequence of posterior pdf’s p(bk+1|o1:k+1, q0) with k =
0, 1, 2, ..., starting from the prior density p(b0). It is often written as a two-step
procedure consisting in

(a) a prediction step, i.e., the computation of p(bk+1|o1:k, q0) via Eq. (12) ;
(b) an update step, i.e., the computation of p(bk+1|o1:k+1, q0) via Eq. (11).

In general, the stochastic filter does not admit an exact implementation, unless
the state-space is discrete and finite or the model is linear and Gaussian [15]. In the
latter case, p(bk+1|o1:k+1, q0) is Gaussian and it can be computed exactly at each
time step k = 0, 1, 2... using the algorithm known as Kalman filter [30] (see also,
e.g., [2]).
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If q0 is unknown, the model is not Markov anymore, hence p(bk+1|bk,o1:k) 6=
p(bk+1|bk, q0). As a consequence, the predictive step in the stochastic filter becomes

p(bk+1|o1:k) =

∫
p(bk+1|bk,o1:k) p(bk|o1:k) dbk.

Again, there is no closed form solution for this integral in general.

3.2. Particle filtering. Particle filters are methods for the approximate numerical
implementation of the optimal stochastic filter. We first assume that q0 is known
in order to derive a standard sequential importance sampling (SIS) algorithm [16].
In particular, we apply importance sampling (see, e.g., [40]) to approximate the
distribution with density p(b0:k+1|o1:k+1, q0). The latter pdf admits the recursive
decomposition

p(b0:k+1|o1:k+1, q0) ∝ p(ok+1|bk+1) p(bk+1|bk, q0) p(b0:k|o1:k, q0), (13)

based on the Bayes’ theorem, the Markov property of the sequence bk and the
conditional independence of the observations. If we draw M samples (often called

particles) b
(i)
0:k+1, i = 1, ...,M , from an importance function, or proposal pdf, which

can be factorized as
q(b0:k+1) = q(bk+1|b0:k) q(b0:k) (14)

then an importance weight v
(i)
k+1 of the form

v
(i)
k+1 ∝

p(ok+1|b(i)
k+1) p(b

(i)
k+1|b

(i)
k , q0)

q(b
(i)
k+1|b

(i)
0:k)

×
p(b

(i)
0:k|o1:k, q0)

q(b
(i)
0:k)

∝
p(ok+1|b(i)

k+1) p(b
(i)
k+1|b

(i)
k , q0)

q(b
(i)
k+1|b

(i)
0:k)

v
(i)
k . (15)

is assigned to each sample b
(i)
0:k+1. The weights are normalized (i.e.,

∑M
i=1 v

(i)
k+1 = 1)

and this is the reason of the ∝ sign in Eq. (15).
From Eqs. (14) and (15), we observe that both the generation of samples and the

computation of the weights can be done sequentially. For instance, if we choose the

prior pdf p(b0:k+1) = p(bk+1|bk, q0)
∏k

n=1 p(bn|bn−1, q0) p(b0) as an importance

function, then the sample b
(i)
k+1 can be drawn from p(bk+1|b(i)

k , q0) (independently

of b
(i)
0:k−1) and the corresponding weight reduces to

v
(i)
k+1 ∝ v

(i)
k p(ok+1|b(i)

k+1).

Table 2 summarizes the standard SIS algorithm with prior importance function
for the gamma state-space model of Section 2.3. This is also the well-known boot-
strap filter of [28], or a special (actually the simplest) case of the auxiliary PF in
[38]. Note that the algorithm includes a resampling step that consists in drawing
M times, with replacement, from the discrete probability distribution given by the
particles and their weights. Intuitively, we are randomly selecting the most “promis-
ing” particles (those with large importance weights) to be propagated in the next
recursive step, while (randomly) discarding those with low weights. This algorith-
mic step is necessary to avoid the degeneracy of the importance weights over time
[16]. Although several forms of resampling can be applied [9, 14, 5], we adopt the
conceptually simple multinomial resampling method. Even if it is not indispensable
to perform resampling at every time step and it can be done periodically or accord-
ing to some measure of weight degeneracy [16, 14], here we assume resampling is
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Table 2. Standard SIS algorithm with multinomial resampling (SISR).

Initialization. Let M be the number of particles. Draw b
(i)
0 from p(b0) and

set w
(i)
0 = 1/M , i = 1, ...,M .

Recursive step. At time k ≥ 0, assume that the set {b(i)
k }i=1,...,M is available.

1. For i = 1, . . . ,M ,

(a) draw b̄
(i)
k+1 from p(bk+1|b(i)

k , q0),

(b) compute the weight, ṽ
(i)
k+1 = p(ok+1|b̄(i)

k+1),

(c) and normalize it, v
(i)
k+1 =

ṽ
(i)
k+1∑M

j=1 ṽ
(j)
k+1

.

2. Multinomial resampling: for i = 1, ...,M , assign b
(i)
k+1 = b̄

(j)
k+1 with

probability v̄
(j)
k+1, with j ∈ {1, ...,M}.

carried out at every k for the sake of clarity in the presentation of the algorithms.

The resampled particles are all equally weighted [16], hence v
(i)
k+1 ∝ p(ok+1|b̄(i)

k+1)
independently of the i-th weight at time k − 1.

Let πk(dbk) = p(bk|o1:k, q0) dbk denote the probability measure associated to
the posterior density of bk. The SISR algorithm of Table 2 yields a random ap-
proximation of πk with discrete support, namely

πM
k (dbk) =

M∑
i=1

v
(i)
k δ

b̄
(i)
k

(dbk),

where δ
b̄

(i)
k

denotes the unit delta measure centered at the point b̄
(i)
k in the state-

space. The measure πM
k enables the straightforward approximation of integrals with

respect to πk+1 as simple summations. In particular, for an arbitrary integrable
function of bk, the integral

(f, πk) =

∫
f(bk) πk(dbk) =

∫
f(bk) p(bk|o1:k, q0) dbk

is approximated as4

(f, πM
k ) =

∫
f(bk) πM

k (dbk) =

M∑
i=1

v
(i)
k f(b

(i)
k ).

For example, the posterior mean of bk given o1:k (i.e., the minimum mean square

error estimator of bk) can be approximated as b̂M
k =

∑M
i=1 v

(i)
k b̄

(i)
k . It can be proved

that limM→∞(f, πM
k ) = (f, πk) in a number of ways (e.g., almost surely or in the

mean square error) under mild regularity assumptions. See [35, 5] for a survey of
classical results on the convergence of particle filters.

4We can also use the approximate measure π̌k(dbk) = 1
M

∑M
i=1 δb(i)

k

(dbk) (built with the

resampled particles) to approximate the integral (f, πk). However, compared to (f, πM
k ), the

estimator (f, π̌M
k ) presents additional Monte Carlo variance due to the resampling step [16].
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3.3. Rao-Blackwellized particle filter. The aim of this paper is the joint es-
timation of q0 and tracking of bk. If q0 is assumed unknown (and random),
then the process of the population biomass, bk, is not Markov anymore, i.e.,
p(bk+1|b0:k) 6= p(bk+1|bk, q0), and the particle filter described in Table 2 can not
be used.

To obtain a practical particle filter for this case, we assume again that the target
density is p(b0:k+1|o1:k+1), with prior p(b0). From Bayes’ theorem we still have a
recursive relationship similar to (13), namely

p(b0:k+1|o1:k+1) ∝ p(ok+1|bk+1)p(bk+1|b0:k,o1:k)p(b0:k|o1:k),

where the likelihood p(ok+1|bk+1) does not change with respect to the case with q0

known (the observations are still conditionally independent) but we have a factor
p(bk+1|b0:k,o1:k) instead of p(bk+1|bk, q0).

Assume that, at time k + 1, we can draw b
(i)
k+1 from the distribution with pdf

p(bk+1|b(i)
0:k,o1:k). Then, by the same argument as in Section 3.2, the normal-

ized weight associated to b
(i)
k+1 is still proportional to the likelihood, i.e., v

(i)
k+1 ∝

p(ok+1|b(i)
k+1), and we can derive a particle filter very similar in structure to the

algorithm of Table 2.

Finally, we need to compute and draw from p(bk+1|b(i)
0:k,o1:k). This pdf can be

written in terms of the random variable q0 as

p(bk+1|b(i)
0:k,o1:k) =

∫
p(bk+1|b(i)

k , q0) p(q0|b(i)
0:k) dq0, (16)

by exploiting the fact that p(bk+1|b(i)
1:k,o1:k, q0) = p(bk+1|b(i)

k , q0), since the se-

quence bk is Markov conditional on q0, and p(q0|b(i)
0:k,o1:k) = p(q0|b(i)

0:k), since q0 is

independent of the observations o1:k given the sequences of biomass b
(i)
0:k.

However, conditional on the sequence b
(i)
0:k, the estimation of q0 can be addressed

by means of the linear-Gaussian state space model of Section 2.2 and solved nu-
merically using the simple Kalman filtering algorithm of Table 1. In particular, if

we define ∆
(i)
k+1, h

(i)
k+1, Q

(i)
k+1, g

(i)
k+1 and z

(i)
k+1 exactly in the same way as in Section

2.2 but using the biomass vector b
(i)
k = [x

(i)
k , y

(i)
k ]> instead of the generic xk and yk

of Eq. (5), then p(q0|b(i)
0:k) = p(q0|z(i)

1:k), which can be computed exactly using the
Kalman filter to obtain

p(q0|b(i)
0:k) = N (q0; q̂

(i)
0,k, P

(i)
k ). (17)

The superscript (i) in the posterior mean and variance of q0 indicates that they both

depend on the particle b
(i)
0:k. Since the PF handles a set of M particles, this means

that a bank of M Kalman filters running in parallel has to be implemented.

Both p(q0|b(i)
0:k) and p(bk+1|b(i)

k , q0) are Gaussian (see Eqs. (17) and (9), respec-
tively) and, as a consequence, the integral in (16) also yields a Gaussian density
(see, e.g., [11]). In particular, it can be shown that

p(bk+1|b(i)
0:k,o1:k) = N (bk+1;β

(i)
k+1,B

(i)
k+1), (18)

where

β
(i)
k+1 = g

(i)
k+1q̂

(i)
0,k + b

(i)
k + h

(i)
k+1, and

B
(i)
k+1 = g

(i)
k+1P

(i)
k g

(i)>

k+1 + τQ
(i)
k+1Q

(i)>

k+1 .
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Table 3. Rao-Blackwellized PF for biomass tracking when the
functional response parameter q0 is unknown.

Initialization. Draw b
(i)
0 , i = 1, ...,M , from the prior pdf p(b0). Select

the prior mean, q̂0,0, and variance, P0, for the unknown parameter q0. Set

q̂
(i)
0,0 = q̂0,0 and P

(i)
0 = P0 for each i = 1, ...,M .

Recursive step. At time k ≥ 0, assume that the set
{

b
(i)
0:k, q̂

(i)
0,k, P

(i)
k

}
i=1,...,M

is available. Then proceed as follows.
1. For each i = 1, ...,M :

(a) Draw b̄
(i)
k+1 from the Gaussian pdf N (bk+1;β

(i)
k+1,B

(i)
k+1) specified in

Eq. (18).

(b) Compute the weight ṽ
(i)
k+1 = p(ok+1|b̄(i)

k+1) according to Eq. (10).

(c) Normalize the weight as v
(i)
k+1 =

ṽ
(i)
k+1∑M

j=1 ṽ
(j)
k+1

.

(d) Update the posterior pdf of q0 conditional on {b̄(i)
k+1,b

(i)
0:k} by taking

one step of the Kalman filter outlined in Table 1. Obtain

p(q0|b̄(i)
k+1,b

(i)
0:k) = N (q0; q̂

(i)
0,k+1, P

(i)
k+1).

2. Multinomial resampling: for i = 1, ...,M , let b
(i)
0:k+1 = {b̄(j)

k+1,b
(j)
0:k},

q̂
(i)
0,k+1 = q̂

(j)
0,k+1 and P

(i)
k+1 = P

(j)
k+1 with probability v

(j)
k+1, j ∈ {1, ...,M}.

Table 3 outlines the proposed PF for tracking the biomass in bk with unknown
parameter q0. As in the case of the basic PF of Table 2, it includes a multinomial
resampling step at every time k. Specifically notice that, after resampling, it is
necessary to keep track of the Kalman filter outputs (mean and variance) for each
particle.

A posterior estimate of q0 can be easily obtained at any time k using the statis-
tics generated by the algorithm of Table 3. In particular, the posterior mean and
variance of q0 conditional on the observations o1:k can be approximated as

q̂M0,k =

M∑
i=1

v
(i)
k q̂

(i)
0,k, (19)

PM
k =

M∑
i=1

v
(i)
k

[(
q̂

(i)
0,k − q̂

M
0,k

)2

+ P
(i)
k

]
, (20)

respectively.
The proposed algorithm, outlined in Table 3, is an example of a Rao-Blackwellized

particle filter (RBPF) [11, 16]. Compared to other particle filtering methods where
the unknown functional-response parameters are approximated by sampling [32,
19, 18], the RBPF has as a key feature the analytical integration of q0 by way of
a bank of Kalman filters. This is possible, because of the conditionally linear (and
Gaussian) structure of the Lotka-Volterra system given the sequences of biomass,
as explicitly displayed by Eq. (6). Handling q0 analytically reduces both the dimen-
sion of the state space where particles have to be generated and the variance of the
estimators (both of q0 and bk) [11, 16]. Moreover, the derivation of the algorithm
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Table 4. Rao-Blackwellized PF for biomass tracking with un-
known q0 and missing data.

Let K ⊆ {1, 2, . . . , S} be the set of discrete time instants in which observations
are available.

Initialization. Draw b
(i)
0 , i = 1, ...,M , from the prior pdf p(b0). Select

the prior mean, q̂0,0, and variance, P0, for the unknown parameter q0. Set

q̂
(i)
0,0 = q̂0,0 and P

(i)
0 = P0 for each i = 1, ...,M .

Recursive step. At every k ≥ 0, assume that the set
{

b
(i)
0:k, q̂

(i)
0,k, P

(i)
k

}
i=1,...,M

is available. Then proceed as follows.
1. For each i = 1, ...,M :

(a) Draw b̄
(i)
k+1 from the Gaussian pdf N (bk+1;β

(i)
k+1,B

(i)
k+1) specified in

Eq. (18).

(b) Update the posterior pdf of q0 conditional on {b̄(i)
k+1,b

(i)
0:k} by taking

one step of the Kalman filter outlined in Table 1. Obtain

p(q0|b̄(i)
k+1,b

(i)
0:k) = N (q0; q̂

(i)
0,k+1, P

(i)
k+1).

2. If k ∈ K, then:

(a) For each i = 1, ...,M : compute the weight ṽ
(i)
k+1 = p(ok+1|b̄(i)

k+1)

according to Eq. (10) and normalize the weight as v
(i)
k+1 =

ṽ
(i)
k+1∑M

j=1 ṽ
(j)
k+1

.

(b) Resample: for i = 1, ...,M , let b
(i)
0:k+1 = {b̄(j)

k+1,b
(j)
0:k}, q̂

(i)
0,k+1 = q̂

(j)
0,k+1

and P
(i)
k+1 = P

(j)
k+1 with probability v

(j)
k+1, j ∈ {1, ...,M}.

is rigorous and asymptotic convergence is guaranteed in a similar way as for the
standard PF5.

3.4. Rao-Blackwellized particle filtering with missing observations. Real
data regarding the population biomass are often not available at each discrete time
instant k. The proposed RBPF algorithm can also be applied in this case6, with the
only constrain that the importance weights can only be updated at the times when
data are available. Since the role of the resampling step is to avoid the degeneracy of
the weights, it is only needed when the weights are updated. As before, we assume
a multinomial resampling scheme.

Table 4 outlines the RBPF algorithm with missing observations. We assume
that observations are available at L ordered time instants k1, k2, . . . , kL with k1 ≥
1 and kL ≤ S. The set of instants with available data is denoted with K =
{k1, k2, . . . , kL} ⊆ {1, 2, . . . , S}.

4. Case study. We apply the proposed RBPF method (Table 4) to the acarine
predator-prey system studied in [23]: the prey mite Tetranychus urticae and the

5For example, Lemma 1 in [34] is general enough to guarantee the convergence of the RBPF

algorithm described herein.
6We can also apply the proposed RBPF method when only observations of the prey population

are available. Our computer simulation results (not shown in the paper) indicate that the unknown
parameter q0 is estimated accurately and the two population biomasses are tracked with an error

not much higher than in the full observation case.
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Figure 1. Synthetic series of the prey (continuous line) and preda-
tor (dashed line) biomass, with x0 = 0.1, y0 = 0.007 and q0 = 1.5.

predator mite Phytoseiulus persimilis. The population dynamics is described by
Eq. (2) where the behavioral parameter q0 is unknown.

The parameter values are as follows

r = 0.11, c = 0.35, u = 0.09, σ = 0.321, ε = 0.079 andη = 0.106

according to [23]. The initial conditions are x0 = 0.1, y0 = 0.007, the period τ
between consecutive observations is equal to 1 and expressed in days, and the final
time is S = 179 days. In Section 4.1 the algorithm is tested using synthetic data
and, then, in Section 4.2, it is validated on a set of field data. Finally, the proposed
RBPF is compared with the MCMC method of [23] in Section 4.3.

4.1. Synthetic data. In order to generate a synthetic dataset, we set q0 = 1.5.
Then we use the model in Eq. (2) to generate a sequence of prey x1:S and predator
y1:S population biomass values. The two sequences are displayed in Figure 1. From
these complete sequences, we generate L = 10 noisy observations, ok1

, . . . ,okL
.

Each scalar observation oxki
or oyki

with i = 1, ..., L is a gamma random variate with

mean equal to the corresponding population biomass and variance 10−4.
We have applied the RBPF algorithm with M = 105 particles to jointly estimate

the unknown parameter q0 and track the prey and predator biomass given the
available set of L = 10 synthetic observations. All particles are initialized in the
same way (i.e., the prior of the random vector b0 is a delta measure), x0 = 0.1362
and y0 = 0.0004 are set, and a Gaussian distribution is assumed for the prior density
of q0

7 with q̂0,0 = 0 and P0 = 1.

7The parameter q0 represents the feeding rate of the predators, hence it cannot be negative
in practice. However, the proposed methods demand that the prior p(q0) be Gaussian for formal
consistency. With this constraint in mind, the choice of N (q0; 0, 1) appears poor, because a large
prior probability is assigned to negative values of q0. A prior with positive mean q̂0,0 > 0 can be
used as well without any modification of the procedure. However, even with q̂0,0 = 0, the inference

algorithm performs well (no artifacts, in the form of negative estimates of q0 are observed); hence,
we have chosen to use this “poor” prior to illustrate the robustness of the method.
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We have worked with different values of the observation variance, d2
x = d2

y (see
Eq. (10)) in order to perform a sensitivity analysis on the parameter q0, assessing
the robustness of the proposed approach upon the unknown variance. For each value
of the observation variance we have obtained an approximate posterior distribution
of the parameter q0. Note that every posterior distribution generated by the RBPF
has the form of a mixture of Gaussian distributions, namely

p̂M (q0|ok1:kL
) =

M∑
i=1

v
(i)
S N (q0; q̂

(i)
0,S , P

(i)
S ). (21)

In order to assess the quality of the approximate densities, we have generated 100
random draws, denoted with qj0 where j = 1, ..., 100, from each density. Then, for

each draw qj0, we have generated 5 independent sequences of prey and predator

biomass, denoted with {x̃j,m0:S , ỹ
j,m
0:S } where m = 1, ..., 5 using the model of Eq. (2).

All of them have the same starting points x̃j,m0 = 0.1362 and ỹj,m0 = 0.0004).
Let x̃0:S and ỹ0:S be the average of all the sequences of population biomass, i.e.,

x̃k =
1

500

5∑
m=1

100∑
j=1

x̃j,mk and ỹk =
1

500

5∑
m=1

100∑
j=1

ỹj,mk ,

with k = 0, ..., S. We compare the population estimates with the observations
ok = [oxk, o

y
k]> with (k ∈ K) by means of a normalized error consisting of the sum of

squared errors (at the times where real observations are available) over the empirical
variance of the data. To be specific, we define the normalized sum of squares error
(NSSE) for the prey and predator biomass, respectively, as follows8

NSSEx =

∑
k∈K(oxk − x̃k)2∑
k∈K(oxk − ōx)2

(22)

NSSEy =

∑
k∈K(oyk − ỹk)2∑
k∈K(oyk − ōy)2

(23)

where ōx = 1
L

∑
k∈K o

x
k and ōy = 1

L

∑
k∈K o

y
k. The methodology is the same as the

one used for the evaluation of the inference algorithm with field data in Section 4.2.
The results of the evaluation of NSSEx and NSSEx for each observation vari-

ance are displayed in Table 5. We observe that the NSSE attains its minimum value
when d2

x = d2
y = 10−4, which yields posterior mean and variance approximations

q̂M0,S = 1.4985 and PM
S = 0.0128, respectively.

Figure 2 shows the evaluation of the posterior mean q̂M0,k with k = 1, ..., S, gen-

erated by the RBPF method with d2
x = d2

y = 10−4 and M = 105 (see Eq. (19)).

The steps are due to the missing data (i.e., the value q̂M0,k changes most significantly

when a new datum is processed and the weights are updated).
Since particle filters are sequential algorithms, it is possible to obtain estimates

of the biomass online at each time k. For the same simulation of Figure 2, Figure

8Since the biomass is time varying and can occasionally take either very large or very small
values, a “direct” error of the form, e.g.,

∑
k∈K |oxk − x̃k| can be misleading. Indeed, if oxk is close

to 0, an error of 300% in the estimator x̃k can still be perceived as “small”. On the contrary, if oxk
takes a very high value, errors of, say, 0.01% can still seem “large”. To avoid these artifacts, we
will assess performance by way of a normalized error. Intuitively, the effect of the normalization is

to “amplify” the errors when the data are very stable (with small fluctuations) while “tempering”
them when the data presents large variability.
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Table 5. Performance of the RBPF algorithm with synthetic data,
M = 105 and several values of the observation variance d2

x = d2
y.

The NSSE values are calculated over the average of 500 sequences of
prey and predator biomass generated with 100 independent draws
from the approximate posterior of q0 obtained from the particle
filter.

Observation variance q̂M0,S PM
S NSSEx NSSEy

10−8 1.4779 0.0045 0.4530 0.5174
10−7 1.4292 0.0043 0.4523 0.5028
10−6 1.5139 0.0056 0.4283 0.4949
10−5 1.4619 0.0079 0.4152 0.4897
10−4 1.4985 0.0128 0.4084 0.4694
10−3 1.4701 0.0165 0.4616 0.5152

0 20 40 60 80 100 120 140 160 180
−0.5

0

0.5

1

1.5

2

q 0

Time

Figure 2. Particle filter estimates (q̂M0,k, k = 1, 2, ..., S) of the

unknown parameter q0 over time with M = 105 particles.

3 displays the true (synthetic) sequences x0:S and y0:S together with the online
estimates

x̂Mk =

M∑
i=1

v
(i)
k x

(i)
k and ŷMk =

M∑
i=1

v
(i)
k y

(i)
k . (24)

The biomass sequences at the instants k1, . . . , kL where observations are actually
available are displayed with stars. It can be seen that the estimates are accurate at
the times where observations are processed, but there is a drift (the error increases)
when data are not available, especially for k < 40. From Figure 2 we also see that
for k ≥ 40 the estimates of q0 are more accurate, and this also affects the accuracy
of the biomass estimation.

We use M = 105 particles to guarantee a good estimation of the biomass vari-
ables, stable across different simulation runs. In order to assess the stability of the
filter and the “balance” of the particle set, it is customary to estimate the effective
sample size (ESS) as [16]

M̂eff =
1∑M

i=1

(
v

(i)
k

)2 . (25)
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Figure 3. Comparison of the true synthetic biomass sequences
(dash-dotted lines) and the online biomass estimates (continuous
lines) generated by the RBPF algorithm of Table 4. The points for
which observations are available are displayed with stars.

A small value of M̂eff means a large variance for the weights, hence a stronger de-

generacy. Figure 4 shows the M̂eff values obtained over time. The ESS is piece-wise
constant because the weights only change when new observations become available.
According to the results, the filter is stable most of the time, with a reasonable
diversity and only at k = 40 and k = 120 it drops because the lack of observations
in the previous time steps makes it difficult to keep the quality of the particle set.

Better tracking results are obtained when the biomass sequences are estimated
with a second “pass” of the particle filter. To show it, we have taken the estimate
q̂M0,S = 1.4985 generated by the RBPF with the lowest NSSEx and NSSEy (Table

4) and then run the simpler PF of Table 2 with M = 105 and fixed q0 = 1.4985
using the same set of 10 observations. We have selected the same initial conditions,
x0 = 0.1362 and y0 = 0.0004, τ = 1 day, and observation variance d2

x = d2
y = 10−4

in Eq. (10). The results, plotted in Figure 5 show a clear improvement in the
biomass estimates for 1 ≤ k ≤ 40.

4.2. Field data. The data used in this subsection concern the dynamics of the
acarine predator-prey system Tetranychus urticae-Phytoseiulus persimilis and have
been collected in a strawberry crop in Ispica (Ragusa, Italy) [25].

The series consists of L = 13 data samples over a time interval of S = 98 days.
In [23], 6 observations of this dataset (from 2nd to 7th in the time series), which
represent the first cycle of the prey, were used to estimate the unknown parameter
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Figure 4. The effective sample size, M̂eff , estimated over time
for a typical run of the RBPF algorithm with the setup of Section
4.1.
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Figure 5. Comparison of the true synthetic biomass sequences
(dash-dotted lines) and the online biomass estimates (continuous
lines) generated by the PF of Table 2 with fix q0 = 1.4985. The
points for which observations are available are displayed with stars.

q0. We take the complete dataset together with the final time S = 98 days. Our
goal is to forecast the prey and predator biomass between consecutive field data
and to estimate the unknown parameter q0.
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Table 6. Performance of the RBPF algorithm with field data,
M = 2×105 particles and several values of the observation variance
d2
x = d2

y. The NSSE values are calculated over the average of
500 sequences of prey and predator biomass generated with 100
independent draws from the approximate posterior of q0 obtained
from the particle filter. Results are shown for a small dataset (S =
49 days, 7 field data samples) and the complete dataset (S = 98
days, 13 field data samples).

Observation variance q̂M0,S PM
S NSSEx NSSEy

S = 49 ≤ 10−7 - - - -
10−6 1.6570 0.0105 0.2307 0.0544
10−5 1.6715 0.0134 0.2082 0.0446
10−4 1.6985 0.0137 0.1839 0.0441

S = 98 ≤ 10−7 - - - -
10−6 1.7283 0.0093 0.1334 0.1569
10−5 1.8464 0.0096 0.1116 0.1361
10−4 1.9417 0.0097 0.1253 0.1557

We have run the RBPF algorithm of Table 4 with M = 2×105 particles and field
observations. The same as in the experiments with synthetic data, we set initial
conditions x0 = 0.1362 and y0 = 0.0004 (for all particles), a time period τ = 1
day, and a Gaussian prior p(q0) = N (q0; 0, 1). The measurement error is unknown,
thus we have run the RBPF algorithm using different observation variances starting
from low values. For each value of the observation variance, we have obtained an
approximate posterior distribution of q0 (see Eq. (21)) and in order to assess the
validity of the approximation we have followed the same methodology as in the
computer simulations whose results are displayed in Table 5.

The results of the experiment with field data are shown in Table 6. In this
table, both intermediate results, by setting the observation period to only S = 49
days (this includes 7 field data samples), and results for the complete field dataset
(S = 98, 13 data samples) are displayed.

It is observed that the estimation error of the prey estimates (NSSEx) is slightly
lower when processing the complete dataset (NSSEx = 0.1839 for d2

x = d2
y = 10−4

with S = 49, while NSSEx = 0.1116 for d2
x = d2

y = 10−5 with S = 98). However,
the error of the predator estimates is clearly lower for the short sequence of field
data (NSSEy = 0.0441 for d2

x = d2
y = 10−4 with S = 49, while NSSEy = 0.1361

for d2
x = d2

y = 10−5 with S = 98). It should also be noticed that the errors are

minimized for observation variance 10−4 with S = 49, while for S = 98 the best
results correspond to variance 10−5.

Figure 6 shows the evolution of the posterior mean estimates of the unknown
parameter q̂M0,k (with k = 1, . . . , 98) using the observation variance d2

x = d2
y =

10−5 and the field dataset. We have used the same number of particles, initial
conditions and prior p(q0) as before (M = 2 × 105, x0 = 0.1362, y0 = 0.0004,
p(q0) = N (q0; 0, 1)). The same step shape as in Figure 2 is observed, with jumps
associated to the time instants when observations are available. For k ≥ 57, the
estimate q̂M0,k is already close to its final value q̂M0,S .
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Figure 6. Particle filter estimates (q̂M0,k, k = 1, 2, ..., 98) of the

unknown parameter q0 over time with M = 2 × 105 particles, the
observation variance d2

x = d2
y = 10−5 and field data.

Figure 7 compares the field observations (marked with stars) and the online
estimates (computed as in Eq. (24)) for the same experiment as in Figure 6. We
observe some apparent misadjustment in the estimation of the predator biomass
in the four initial data points (i.e., until k = 30, approximately). This fact is not
surprising because: (a) the parameter estimate has not converged yet at this time
(see Figure 6) and (b) the predator population appears to be extremely low, which
makes tracking more difficult. Starting from the fourth point, both populations are
estimated accurately, until the predator population becomes very low again at the
end of the time period.

We have also applied the PF of Table 2, with M = 2 × 105 particles and fixed
q0 = 1.8464, to the field data in order to obtain a more reliable forecast of the
sequences of biomass, especially for the first part of the time period. As in the
previous experiments, we set x0 = 0.1362, y0 = 0.0004, τ = 1 and d2

x = d2
y = 10−5.

The results are shown in Figure 8. The predator biomass estimation is improved
from k = 9 to k = 35, while the estimates of the prey biomass are very similar to
the online estimates generated by the RBPF algorithm.

The RBPF algorithm with M = 2 × 105 particles, coded as a Matlab (version
7.6, R2008a) script, runs in ≈ 18.6 minutes on an Intel Core2 Quad Q9300 2.50GHz
processor for the large dataser (S = 98). We remark that if new data were to
be collected the required computation time would be proportional to the length of
the new dataset only, since the new approximation of the posterior distribution (of
both q0 and the biomasses) would be computed recursively. This is in contrast with
MCMC methods, which would require to re-process the old data as well.

4.3. Comparison with the method of [23]. In this section, we compare the par-
ticle filtering method introduced in this paper and the MCMC technique proposed
in [23]. We are interested in assessing the quality of the estimates of the param-
eter q0 generated by the two methodologies. The posterior mean and variance of
q0 obtained via the RBPF are 1.8464 and 0.0096, respectively, while the posterior
mean and variance obtained via the MCMC technique of [23] are 1.6863 and 0.0026,
respectively.

A direct evaluation of the estimation accuracy is impossible because a “true”
value of q0 is unknown. Therefore, we carry out an indirect comparison by way of
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Figure 7. Online estimates of the prey and predator biomass (con-
tinuous line) and field data points (stars). These results have been
obtained with the RBPF of Table 4, with M = 2× 105 particles.

the NSSE of both the prey and the predator biomass9. In particular, we follow the
same methodology as to obtain the results of Table 5.

Tables 7 and 8 display the values of the field data samples for the prey and the
predator, respectively, together with the mean values (at the same time instants)
corresponding to draws from the approximate posterior distribution of q0 obtained
from the RBPF algorithm and from the MCMC algorithm of [23]. Table 9 displays
the NSSE values attained by both methodologies (MCMC in [23] and the RBPF
algorithm in this paper). The approximate posterior of q0 obtained via the RBPF
algorithm yields lower values of the NSSE both for the prey and the predator, both
with the short field data series (S = 49) and the long field data series (S = 98).

According to the NSSE comparison in Table 9, the RBPF algorithm yields a
better approximation of the posterior distribution of q0 (hence, better estimates)
than the MCMC method of [23]. Moreover, the technique herein proposed allows
to improve the forecast of population dynamics, because it enables the assimilation
of new data samples as they become available. In particular, the MCMC method-
ology was used to obtain a single estimation based on the entire dataset, while the
proposed RBPF technique is also useful in case an estimate of the parameter and a

9In the case of the predator time series, to calculate NSSEy values we use estimations and
experimental data from the 3rd to the 13th in the time series because there are not MCMC

estimations for 1st and 2nd observations. This is because the MCMC method of [23] does not
allow us to handle null observations.
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Figure 8. Estimates of the prey and predator biomass obtained
with the particle filter of Table 2 with M = 2 × 105 particles and
fix q0 = 1.8464. Asterisks denote experimental data.

Table 7. Comparison of prey experimental biomass and mean
biomass from 500 independent simulations of model (2) using 100
random draws of q0 from the posterior approximated via MCMC
[23] and from the posterior approximated via the RBPF algorithm.

Time Experimental biomass with q0 from MCMC with q0 from RBPF
0 0.1362 0.1362 0.1362
9 0.3024 0.2956 0.2861
21 0.6393 0.5999 0.5688
27 0.4863 0.5934 0.6366
35 0.3930 0.2551 0.3860
42 0.2053 0.0942 0.1144
49 0.0545 0.0484 0.0366
57 0.0198 0.0405 0.0205
69 0.0045 0.0581 0.0306
75 0.0026 0.0796 0.0433
83 0.0028 0.1202 0.0694
90 0.0595 0.1654 0.1069
98 0.0394 0.2203 0.1597
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Table 8. Comparison of predator experimental biomass and mean
biomass from 500 independent simulations of model (2) using 100
random draws of q0 from the posterior approximated via MCMC
[23] and from the posterior approximated via the RBPF algorithm.

Time Experimental biomass with q0 from MCMC with q0 from RBPF
0 0 - 0.0004
9 0 - 0.0006
21 0.0089 0.0089 0.0049
27 0.0205 0.0467 0.0262
35 0.0903 0.1560 0.1304
42 0.1763 0.1425 0.1669
49 0.1097 0.0981 0.1150
57 0.0148 0.0588 0.0627
69 0.0005 0.0275 0.0239
75 0.0002 0.0212 0.0159
83 0 0.018 0.0109
90 0.0049 0.0204 0.0099
98 0 0.0277 0.0133

Table 9. Comparison of the NSSE for the prey (NSSEx) and
the predator (NSSEy) obtained from random draws of q0 using
the approximate posterior distributions generated by the MCMC
method of [23] and the RBPF algorithm in this paper.

First cycle Complete series
NSSEx NSSEy NSSEx NSSEy

MCMC [23] 0.1760 0.3331 0.2075 0.3018
RBPF (Table 4) 0.1443 0.0941 0.1116 0.1459

foresight of prey and/or predator biomass are required during the evolution of the
populations.

5. Discussion. In this paper we have investigated a particle filtering method for
estimating the functional response and tracking population biomass in a stochastic
predator-prey system. The system is described by a Lotka-Volterra type model
with logistic growth of the prey as proposed in [23]. The linear structure of the
Lotka-Volterra functional response conditional on the population biomass allows
to design an efficient particle filtering technique. The proposed method uses a
bank of Kalman filters for analytically integrating the unknown parameter, while
sampling in the 2-dimensional space of the prey and predator biomass. Compared to
other particle filtering techniques that use Monte Carlo sampling for estimating the
unknown parameter, the proposed approach reduces the variance of the resulting
estimates.

Then, this particle filter method is adapted to small observation datasets, up-
dating importance weights and resampling the particle set only when experimental
observations become available. These characteristics make the method suitable for
adaptive management. In fact, according to the adaptive management framework,
information synthesis is performed with models whose parameters are continuously
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adapted to the level of available information. We agree with [41] on the utility of
an adaptive management framework in integrated pest management (IPM). Within
the adaptive management framework in IPM, the predator-prey model we propose
can undergo changes leading to improved predictive and explicative capabilities as
more information becomes available.

The use of the Lotka-Volterra model should represent a limitation due to the
underlying biology. The conditionally linear functional response in the model im-
plies an unsaturated capability of prey biomass intake for the predator. In pest
management context, in most of the cases we are interested in short or medium-
term forecast, and for predator-prey dynamics the time-frame usually comprises no
more than a single population cycle. In this condition the intrinsic limitation in
the conditionally linear functional response model is outpaced by the advantages
offered by the availability of prompt and progressively improved estimation of the
predator functional response.

The proposed method enables us to jointly estimate the functional response and
the biomass of prey and predator. For testing the behavior of the particle filter
algorithm, we have used both a set of synthetic data and experimental observations
of an acarine predator-prey system, the pest mite Tetranychus urticae and the
predator mite Phytoseiulus persimilis. The estimated distribution of q0 and mean
trajectories of predator and prey show a satisfactory fit to field data. This result
confirms the goodness of the proposed method.

We would like to point out that, differently from MCMC methods, the PF method
does not present restriction on the dataset. In fact, it can be applied also during
the period of data collection without waiting up to the end of at least one cycle of
the population like in [23]. This aspect is very important in the design of strategies
of predator release for biological control.

An additional strength of the proposed RBPF algorithm is that it can be easily
integrated with some computational methodologies, recently proposed in the sta-
tistics literature, that are clearly susceptible of future application to the problems
involving parameter estimation in predator-prey models. This particularly includes
PMCMC [3] and sequential Monte Carlo square (SMC2) [12] techniques. For ex-
ample, one can think of a SMC2 algorithm for the joint estimation of several model
parameters (e.g., ε, σ or η in Eq. (2)) beyond the functional response. In such
algorithm, the proposed RBPF would allow to to analytically handle the behavioral
parameter q0 in the second layer of filters of the SMC2 scheme. In this way, the
conditionally-linear structure of the model on q0 would still be exploited and the
dimension of the sampling space would not be unnecessarily increased. This is of
great importance as SMC2 schemes are computationally intensive. Combinations
of the RBPF with other, simpler, parameter estimation techniques (e.g., [32]) are
also possible.
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