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Quasi-Static MIMO Fading Channel (1)

Yk = Hxk + Wk , k ∈ Z

• MIMO: t transmit antennas, r receive antennas.

• Signal transmitted over n channel uses.

• Dimensions: X ∈ Cn×t , Y ∈ Cn×r , H ∈ Ct×r , and W ∈ Cn×r .

• Entries of W are IID NC(0, 1).

• Quasi-static: fading coefficients are random but stay constant.

Reasonable if blocklength � coherence time of channel:

⇒ large coherence time (very-slowly fading channel)
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Capacity vs. Outage

For many interesting fading distributions channel capacity is zero:

⇒ study capacity vs. outage.

Outage:

⇒ Event that channel prohibits reliable communication at a given rate.

⇒ Suppose we communicate at SNR ρ, and let H = h (t = r = 1).
For any rate R < log(1 + |h|2ρ) we have ε→ 0 as n→∞.

⇒ Outage if R > log(1 + |h|2ρ):

Pout(R) , Pr
(
log(1 + |H|2ρ) < R

)

⇒ Outage capacity is the supremum of all rates satisfying Pout(R) ≤ ε.
L.H. Ozarow, S. Shamai (Shitz), A.D. Wyner, “Information theoretic considerations for cellular
mobile radio,” IEEE Transactions on Vehicular Technology, May 1994.

E. Biglieri, J. Proakis, S. Shamai (Shitz), “Fading channels: Information-theoretic and communci-
ations aspects,” IEEE Transactions on Information Theory, October 1998.
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Outage Capacity and Delay Constraints

• “For stringent delay constraints [...] a natural information-theoretic
performance measure is based on the capacity versus outage
probability characteristics.”

• “[With delay constraints], information outage probability, defined as
the probability that the instantaneous mutual information of the
channel is below the transmitted coding rate, is the appropriate
performance limit indicator.”

• “For practical systems with more stringent delay constraints, outage
capacity is a more relevant metric.”
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Is there a coding theorem
for outage capacity?



(n,M , ε)` Code

• Different scenarios: no-CSI (no), CSIT (tx), CSIR (rx), CSIRT (rt)

• An (n,M, ε)` code (` = {no, tx, rx, rt}) consists of the following:

Encoder:
No-CSI or CSIR:
f : {1, . . . ,M} → Cn×t s.t.

‖f (m)‖2
F ≤ nρ, ∀m

Decoder:
No-CSI or CSIR:
g : Cn×t → {1, . . . ,M} s.t.

max
w

Pr(g(Y) 6= W |W = w) ≤ ε

⇒ maximum error probability, short-term power constraint
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Maximal Achievable Rate

• Maximal achievable rate defined as

R∗` (n, ε) , sup

{
log M

n
: ∃ (n,M, ε)` code

}
, ` = {no, rx, tx, rt}

• What is the largest rate such that the probability of error is not
larger than ε as n→∞?

• ε-capacity: Cε,` = lim
n→∞

R∗` (n, ε)

S. Verdú, T.S. Han,“A general formula for channel capacity,” IEEE Transactions on Information
Theory, July 1994.

M. Effros, A. Goldsmith, Y. Liang, “Generalizing capacity: New definitions and capacity theorems
for composite channels,” IEEE Transactions on Information Theory, July 2010.
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Outage Capacity: CSIRT Case

Theorem (Caire, Taricco & Biglieri): Let Cε,` be a continuous
function of ε. Then

Cε,` = lim
n→∞

R∗` (n, ε) = sup{R : Pout,tx(R) ≤ ε}, ` ∈ {tx, rt}

where

Pout,tx(R) = Pr

(
max

Q
log det

(
Ir + H†QH

)
< R

)

denotes the outage probability optimized over all positive semidefinite
matrices Q satisfying tr (Q) ≤ ρ.

G. Caire, G. Taricco, E. Biglieri, “Optimum power control over fading channels,” IEEE Transactions
on Information Theory, July 1999.
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Outage Capacity: CSIR Case

Theorem (Telatar): Let Cε,` be a continuous function of ε. Then

Cε,` = lim
n→∞

R∗` (n, ε) = sup{R : Pout,no(R) ≤ ε}, ` ∈ {rx, no}

where
Pout,no(R) = inf

Q
Pr
(
log det

(
Ir + H†QH

)
< R

)

denotes the outage probability optimized over all positive semidefinite
matrices Q satisfying tr (Q) ≤ ρ.

E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Transactions on Telecommu-
nications, November 1999.
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CSI at the receiver doesn’t help

• For a compound channel {Ws : s ∈ S}, knowledge of s at the
receiver does not increase the capacity.

• Intuitively, by transmitting a training sequence of length ∝ √n, the
channel state can be estimated without rate loss.

• Claim follows also from our lower bounds on R∗no(n, ε).

I. Csiszár, J. Körner, Information Theory: Coding Theorems for Discrete Memoryless Systems, New
York: Academic, 1981.

E. Biglieri, J. Proakis, S. Shamai (Shitz), “Fading channels: Information-theoretic and communi-
cations aspects,” IEEE Transactions on Information Theory, October 1998.

W. Yang, G. Durisi, T. Koch, Y. Polyanskiy, “Quasi-static MIMO fading channels at finite block-
length,” submitted to IEEE Transactions on Information Theory.
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Outage capacity for systems
with stringent delay con-
straints?



Outage Capacity vs. Delay Constraints

• Outage capacity has operational meaning for n→∞.

• Quasi-static fading channel is reasonable if

n � coherence time of the channel.

• Suggests that

⇒ delay is large.

⇒ coherence time is large.

• “As a matter of fact, outage probability predicts surprisingly well
the error probability of actual codes for practical values of n.”

G. Caire, G. Taricco, E. Biglieri, “Optimum power control over fading channels,” IEEE Transactions
on Information Theory, July 1999.
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Fading Channels at Finite Blocklength

• Study how quickly R∗` (n, ε)→ Cε,` as n→∞.

• For the Gaussian channel

R∗(n, ε) = C −
√

V

n
Q−1(ε) +O

(
log n

n

)

⇒ V : channel dispersion

• What is the ε-dispersion of quasi-static fading channels?

Y. Polyanskiy, H.V. Poor, S. Verdú, “Channel coding rate in the finite blocklength regime,” IEEE
Transactions on Information Theory, May 2010.
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MIMO Fading Channel with CSIT

Theorem: Assume that H satisfies the following conditions:
1. E

[
det(It + ρHH†)

]
<∞.

2. The joint PDF of the ordered nonzero eigenvalues of H†H exists
and is continuously differentiable.

3. P ′out,tx(Cε,`) > 0.
Then

R∗` (n, ε) = Cε,` +O
(

log n

n

)
, ` ∈ {tx, rt}

⇒ ε-dispersion is zero!

W. Yang, G. Durisi, T. Koch, Y. Polyanskiy, “Quasi-static MIMO fading channels at finite block-
length,” submitted to IEEE Transactions on Information Theory.
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MIMO Fading Channel without CSIT

Theorem: Assume that the PDF of H, denoted by fH, satisfies the
following conditions:

1. fH is smooth (has derivatives of all orders).

2. There exists a constant c such that fH(H) > 0, ‖H‖F < c and
fH(H) = 0, ‖H‖F ≥ c .

Then

R∗` (ε, n) = Cε,` +O
(

log n

n

)
, ` ∈ {no, rx}

⇒ ε-dispersion is zero!

W. Yang, G. Durisi, T. Koch, Y. Polyanskiy, “Quasi-static MIMO fading channels at finite block-
length,” submitted to IEEE Transactions on Information Theory.
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Stringent Conditions (?)

• MIMO case without CSIT is hard:

⇒ Q minimizing Pr
(
log det

(
Ir + H†QH

)
< R

)
is unknown.

⇒ outage capacity of MIMO fading channel with no CSIT still open.

• Second condition requires that ‖H‖F is essentially bounded:

⇒ not satisfied by common fading distributions (e.g., Rayleigh, Rician,
Nakagami fading).

⇒ c can be arbitrarily large—probably a mere technicality.

• For SIMO case conditions can be weakened.

E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Transactions on Telecommu-
nications, November 1999.
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SIMO Fading Channel without CSIT

Theorem: Assume that:
1. The PDF of ‖H‖2

F is continuously differentiable.

2. P ′out,no(Cε,`) > 0
Then

R∗` (n, ε) = Cε,` +O
(

log n

n

)
, ` ∈ {rx, no}

⇒ ε-dispersion is zero!

W. Yang, G. Durisi, T. Koch, Y. Polyanskiy, “Quasi-static SIMO fading channels at finite block-
length,” 2013 IEEE International Symposium on Information Theory (ISIT), Istanbul, Turkey.
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ε-Dispersion is zero!

R∗` (n, ε) = Cε,` +O
(

log n

n

)

• Suggests fast convergence to outage capacity.

• Consistent with statement by Caire et al. that “outage probability
predicts surprisingly well the error probability of actual codes for
practical values of n.”

• Continuity assumptions on the PDF of H satisfied by most common
fading distributions.

• Assumptions are violated for (nonfading) Gaussian channel
⇒ has in fact positive dispersion
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A Numerical Example
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Comparison with LTE-Advanced
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Proof Outline: Achievability (1)

• Lower bound on R∗` (n, ε) does not require CSIR.

• Consider physically degraded channel X→ ΩY = span(Y)

⇒ has smaller R∗` (n, ε) than original channel X→ Y.

• CSIT: water-filling power allocation.

• Apply κβ bound.

• Use as hypothesis test ZX(ΩY) = I
{

sin2{span(X),ΩY} ≤ γn
}

⇒ γn = e−Cε,`+O(1/n)

⇒ sin{A,B} extends the notion of angle between vectors to complex
subspaces using the concept of principal angles

Y. Polyanskiy, H.V. Poor, S. Verdú, “Channel coding rate in the finite blocklength regime,” IEEE
Transactions on Information Theory, May 2010.
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Proof Outline: Achievability (2)
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Fig. 1. A geometric illustration of the outage event for large blocklength n. In the example, h0 triggers an outage event while h

does not.

1
2
log(1 + ⇢H2) < R (outage event). For the channel in (28), the ✏-capacity C✏, i.e., the largest

rate R for which the probability that the channel is in outage is less than ✏, is given by

C✏ = sup

⇢
R : P


1

2
log(1 + ⇢H2) < R

�
 ✏

�
. (29)

Roughly speaking, the decoder of a C✏-achieving code must err only when the channel is in outage.

Pick now an arbitrary codeword x1 from the hypersphere {x 2 Rn : kxk2 = n⇢}, and let Y

be the received signal corresponding to x1. By the law of large numbers, the noise vector W is

approximately orthogonal to x1 if n is large, i.e.,

hx1, W i
kx1kkW k ! 0, n ! 1. (30)

Also by the law of large numbers, kW k2 ⇡ n. Hence, for a given H and for large n, the angle

✓(x1, Y ) between x1 and Y can be approximated as

✓(x1, Y ) ⇡ arcsin
kW kp

H2kx1k2 + kW k2
(31)

⇡ arcsin
1p

⇢H2 + 1
(32)

where the first approximation follows by (30) and the second approximation follows because

kW k2 ⇡ n. From (29) and (32), it follows that ✓(x1, Y ) is larger than ✓✏ , arcsin(e�C✏) in the

outage case, and smaller than ✓✏ otherwise (see Fig. 1).

This geometric argument suggests the use of a threshold decoder that, for a given received

signal Y , declares xi to be the transmitted codeword if xi is the only codeword for which ✓(xi, Y ) 
✓✏. If no codewords or more than one codeword meet this condition, the decoder declares an error.

November 11, 2013 DRAFT
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Proof Outline: Converse

• Upper bound on R∗` requires CSIR.

• CSIT: transform MIMO channel into min{t, r} parallel channels.

• Apply meta-converse theorem.

• Use auxiliary channel whose output is circularly-symmetric, complex
Gaussian with message-dependent variance.

• MIMO case without CSIT is technically much more involved.

Y. Polyanskiy, H.V. Poor, S. Verdú, “Channel coding rate in the finite blocklength regime,” IEEE
Transactions on Information Theory, May 2010.

W. Yang, G. Durisi, T. Koch, Y. Polyanskiy, “Dispersion of quasi-static MIMO fading channels via
Stokes’ theorem,” submitted to 2014 IEEE International Symposium on Information Theory (ISIT).
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Conclusions

• Channel dispersion of quasi-static MIMO fading channel is zero
irrespective of availability of CSI.

• Suggests fast convergence to outage capacity

⇒ outage capacity as metric for systems with delay constraints.

• Supports observation that outage probability describes accurately
the performance over quasi-static fading channels of actual codes.
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