### 2015

Luengo, David; Martino, Luca; Elvira, Victor; Bugallo, Monica F

Bias correction for distributed Bayesian estimators Inproceedings

In: 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 253–256, IEEE, Cancun, 2015, ISBN: 978-1-4799-1963-5.

Abstract | Links | BibTeX | Tags: Bayes methods, Big data, Distributed databases, Estimation, Probability density function, Wireless Sensor Networks

@inproceedings{Luengo2015a,

title = {Bias correction for distributed Bayesian estimators},

author = {David Luengo and Luca Martino and Victor Elvira and Monica F Bugallo},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7383784},

doi = {10.1109/CAMSAP.2015.7383784},

isbn = {978-1-4799-1963-5},

year = {2015},

date = {2015-12-01},

booktitle = {2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)},

pages = {253--256},

publisher = {IEEE},

address = {Cancun},

abstract = {Dealing with the whole dataset in big data estimation problems is usually unfeasible. A common solution then consists of dividing the data into several smaller sets, performing distributed Bayesian estimation and combining these partial estimates to obtain a global estimate. A major problem of this approach is the presence of a non-negligible bias in the partial estimators, due to the mismatch between the unknown true prior and the prior assumed in the estimation. A simple method to mitigate the effect of this bias is proposed in this paper. Essentially, the approach is based on using a reference data set to obtain a rough estimation of the parameter of interest, i.e., a reference parameter. This information is then communicated to the partial filters that handle the smaller data sets, which can thus use a refined prior centered around this parameter. Simulation results confirm the good performance of this scheme.},

keywords = {Bayes methods, Big data, Distributed databases, Estimation, Probability density function, Wireless Sensor Networks},

pubstate = {published},

tppubtype = {inproceedings}

}

Dealing with the whole dataset in big data estimation problems is usually unfeasible. A common solution then consists of dividing the data into several smaller sets, performing distributed Bayesian estimation and combining these partial estimates to obtain a global estimate. A major problem of this approach is the presence of a non-negligible bias in the partial estimators, due to the mismatch between the unknown true prior and the prior assumed in the estimation. A simple method to mitigate the effect of this bias is proposed in this paper. Essentially, the approach is based on using a reference data set to obtain a rough estimation of the parameter of interest, i.e., a reference parameter. This information is then communicated to the partial filters that handle the smaller data sets, which can thus use a refined prior centered around this parameter. Simulation results confirm the good performance of this scheme.