### 2008

Vazquez, Manuel A; Miguez, Joaquin

A Per-Survivor Processing Algorithm for Maximum Likelihood Equalization of MIMO Channels with Unknown Order Inproceedings

In: 2008 International ITG Workshop on Smart Antennas, pp. 387–391, IEEE, Vienna, 2008, ISBN: 978-1-4244-1756-8.

Abstract | Links | BibTeX | Tags: Channel estimation, channel impulse response, computational complexity, Computer science education, Computer Simulation, Degradation, Frequency, frequency-selective multiple-input multiple-output, maximum likelihood detection, maximum likelihood equalization, maximum likelihood estimation, maximum likelihood sequence detection, maximum likelihood sequence estimation, MIMO, MIMO channels, MIMO communication, per-survivor processing algorithm, time-selective channels, Transmitting antennas

@inproceedings{Vazquez2008,

title = {A Per-Survivor Processing Algorithm for Maximum Likelihood Equalization of MIMO Channels with Unknown Order},

author = {Manuel A Vazquez and Joaquin Miguez},

url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4475587},

isbn = {978-1-4244-1756-8},

year = {2008},

date = {2008-01-01},

booktitle = {2008 International ITG Workshop on Smart Antennas},

pages = {387--391},

publisher = {IEEE},

address = {Vienna},

abstract = {In the equalization of frequency-selective multiple-input multiple-output (MIMO) channels it is usually assumed that the length of the channel impulse response (CIR), also referred to as the channel order, is known. However, this is not true in most practical situations and, in order to avoid the serious performance degradation that occurs when the CIR length is underestimated, a channel with "more than enough" taps is usually considered. This possibly means overestimating the channel order, and is not desirable since the computational complexity of maximum likelihood sequence detection (MLSD) in frequency-selective channels grows exponentially with the channel order. In addition to that, the higher the channel order considered, the more the number of channel coefficients that need to be estimated from the same set of observations. In this paper, we introduce an algorithm for MLSD that incorporates the full estimation of the MIMO CIR parameters, including its order. The proposed technique is based on the per survivor processing (PSP) methodology, it admits both blind and semiblind implementations, depending on the availability of pilot data, and is designed to work with time-selective channels. Besides the analytical derivation of the algorithm, we provide computer simulation results that illustrate the effectiveness of the resulting receiver},

keywords = {Channel estimation, channel impulse response, computational complexity, Computer science education, Computer Simulation, Degradation, Frequency, frequency-selective multiple-input multiple-output, maximum likelihood detection, maximum likelihood equalization, maximum likelihood estimation, maximum likelihood sequence detection, maximum likelihood sequence estimation, MIMO, MIMO channels, MIMO communication, per-survivor processing algorithm, time-selective channels, Transmitting antennas},

pubstate = {published},

tppubtype = {inproceedings}

}

Vazquez, Manuel A; Miguez, Joaquin

A Per-Survivor Processing Algorithm for Maximum Likelihood Equalization of MIMO Channels with Unknown Order Inproceedings

In: 2008 International ITG Workshop on Smart Antennas, pp. 387–391, IEEE, Vienna, 2008, ISBN: 978-1-4244-1756-8.

Abstract | Links | BibTeX | Tags: Channel estimation, channel impulse response, computational complexity, Computer science education, Computer Simulation, Degradation, Frequency, frequency-selective multiple-input multiple-output, maximum likelihood detection, maximum likelihood equalization, maximum likelihood estimation, maximum likelihood sequence detection, maximum likelihood sequence estimation, MIMO, MIMO channels, MIMO communication, per-survivor processing algorithm, time-selective channels, Transmitting antennas

@inproceedings{Vazquez2008a,

title = {A Per-Survivor Processing Algorithm for Maximum Likelihood Equalization of MIMO Channels with Unknown Order},

author = {Manuel A Vazquez and Joaquin Miguez},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4475587},

isbn = {978-1-4244-1756-8},

year = {2008},

date = {2008-01-01},

booktitle = {2008 International ITG Workshop on Smart Antennas},

pages = {387--391},

publisher = {IEEE},

address = {Vienna},

abstract = {In the equalization of frequency-selective multiple-input multiple-output (MIMO) channels it is usually assumed that the length of the channel impulse response (CIR), also referred to as the channel order, is known. However, this is not true in most practical situations and, in order to avoid the serious performance degradation that occurs when the CIR length is underestimated, a channel with "more than enough" taps is usually considered. This possibly means overestimating the channel order, and is not desirable since the computational complexity of maximum likelihood sequence detection (MLSD) in frequency-selective channels grows exponentially with the channel order. In addition to that, the higher the channel order considered, the more the number of channel coefficients that need to be estimated from the same set of observations. In this paper, we introduce an algorithm for MLSD that incorporates the full estimation of the MIMO CIR parameters, including its order. The proposed technique is based on the per survivor processing (PSP) methodology, it admits both blind and semiblind implementations, depending on the availability of pilot data, and is designed to work with time-selective channels. Besides the analytical derivation of the algorithm, we provide computer simulation results that illustrate the effectiveness of the resulting receiver.},

keywords = {Channel estimation, channel impulse response, computational complexity, Computer science education, Computer Simulation, Degradation, Frequency, frequency-selective multiple-input multiple-output, maximum likelihood detection, maximum likelihood equalization, maximum likelihood estimation, maximum likelihood sequence detection, maximum likelihood sequence estimation, MIMO, MIMO channels, MIMO communication, per-survivor processing algorithm, time-selective channels, Transmitting antennas},

pubstate = {published},

tppubtype = {inproceedings}

}