Conference Publications

Show all

2015

Martino, Luca; Elvira, Victor; Luengo, David; Corander, Jukka

Parallel interacting Markov adaptive importance sampling Inproceedings

In: 2015 23rd European Signal Processing Conference (EUSIPCO), pp. 499–503, IEEE, Nice, 2015, ISBN: 978-0-9928-6263-3.

Abstract | Links | BibTeX | Tags: Adaptive importance sampling, Bayesian inference, MCMC methods, Monte Carlo methods, Parallel Chains, Probability density function, Proposals, Signal processing, Signal processing algorithms, Sociology

Elvira, Victor; Martino, Luca; Luengo, David; Corander, Jukka

A Gradient Adaptive Population Importance Sampler Inproceedings

In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4075–4079, IEEE, Brisbane, 2015, ISBN: 978-1-4673-6997-8.

Abstract | Links | BibTeX | Tags: adaptive extensions, adaptive importance sampler, Adaptive importance sampling, gradient adaptive population, gradient matrix, Hamiltonian Monte Carlo, Hessian matrices, Hessian matrix, learning (artificial intelligence), Machine learning, MC methods, Monte Carlo, Monte Carlo methods, population Monte Carlo (PMC), proposal densities, Signal processing, Sociology, statistics, target distribution

2013

Koblents, Eugenia; Miguez, Joaquin

A Population Monte Carlo Scheme for Computational Inference in High Dimensional Spaces Inproceedings

In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6318–6322, IEEE, Vancouver, 2013, ISSN: 1520-6149.

Abstract | Links | BibTeX | Tags: Approximation methods, computational inference, degeneracy of importance weights, high dimensional spaces, Importance sampling, importance weights, iterative importance sampling, iterative methods, mixture-PMC, mixture-PMC algorithm, Monte Carlo methods, MPMC, nonlinear transformations, population Monte Carlo, population Monte Carlo scheme, Probability density function, probability distributions, Proposals, Sociology, Standards