Conference Publications

Show all

2014

Yang, Wei; Durisi, Giuseppe; Koch, Tobias; Polyanskiy, Yury

Dispersion of Quasi-Static MIMO Fading Channels via Stokes' Theorem Inproceedings

In: 2014 IEEE International Symposium on Information Theory, pp. 2072–2076, IEEE, Honolulu, 2014, ISBN: 978-1-4799-5186-4.

Abstract | Links | BibTeX | Tags: channel capacity, differential form integration, Dispersion, Fading, fading channels, fading distribution, integration, Manifolds, Measurement, MIMO, MIMO communication, quasistatic MIMO fading channels dispersion, quasistatic multiple-input multiple-output fading, radio transmitters, Random variables, Stoke Theorem, transmitter

Koch, Tobias

On the Dither-Quantized Gaussian Channel at Low SNR Inproceedings

In: 2014 IEEE International Symposium on Information Theory, pp. 186–190, IEEE, Honolulu, 2014, ISBN: 978-1-4799-5186-4.

Abstract | Links | BibTeX | Tags: Additive noise, channel capacity, dither quantized Gaussian channel, Entropy, Gaussian channels, low signal-to-noise-ratio, low-SNR asymptotic capacity, peak power constraint, peak-and-average-power-limited Gaussian channel, Quantization (signal), Signal to noise ratio

2013

Yang, Wei; Durisi, Giuseppe; Koch, Tobias; Polyanskiy, Yury

Quasi-Static SIMO Fading Channels at Finite Blocklength Inproceedings

In: 2013 IEEE International Symposium on Information Theory, pp. 1531–1535, IEEE, Istanbul, 2013, ISSN: 2157-8095.

Abstract | Links | BibTeX | Tags: achievability bounds, AWGN channel, AWGN channels, channel capacity, channel dispersion, channel gains, Dispersion, error probability, error statistics, Fading, fading channels, fading realizations, fast convergence, finite blocklength, maximal achievable rate, numerical evaluation, outage capacity, quasistatic SIMO fading channels, Random variables, Receivers, SIMO Rician channel, single-input multiple-output, Transmitters, zero dispersion

2012

Koch, Tobias; Martinez, Alfonso; i Fabregas, Albert Guillen

The Capacity Loss of Dense Constellations Inproceedings

In: 2012 IEEE International Symposium on Information Theory Proceedings, pp. 572–576, IEEE, Cambridge, MA, 2012, ISSN: 2157-8095.

Abstract | Links | BibTeX | Tags: capacity loss, channel capacity, Constellation diagram, dense constellations, Entropy, general complex-valued additive-noise channels, high signal-to-noise ratio, loss 1.53 dB, power loss, Quadrature amplitude modulation, Random variables, signal constellations, Signal processing, Signal to noise ratio, square signal constellations, Upper bound

Pastore, Adriano; Koch, Tobias; Fonollosa, Javier Rodriguez

Improved Capacity Lower Bounds for Fading Channels with Imperfect CSI Using Rate Splitting Inproceedings

In: 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, pp. 1–5, IEEE, Eilat, 2012, ISBN: 978-1-4673-4681-8.

Abstract | Links | BibTeX | Tags: channel capacity, channel capacity lower bounds, conditional entropy, Decoding, Entropy, Fading, fading channels, Gaussian channel, Gaussian channels, Gaussian random variable, imperfect channel-state information, imperfect CSI, independent Gaussian variables, linear minimum mean-square error, mean square error methods, Medard lower bound, Mutual information, Random variables, rate splitting approach, Resource management, Upper bound, wireless communications

2011

Ruiz, Francisco J R; Perez-Cruz, Fernando

Zero-Error Codes for the Noisy-Typewriter Channel Inproceedings

In: 2011 IEEE Information Theory Workshop, pp. 495–497, IEEE, Paraty, 2011, ISBN: 978-1-4577-0437-6.

Abstract | Links | BibTeX | Tags: channel capacity, Channel Coding, Equations, Linear code, Noise measurement, noisy-typewriter channel, nontrivial codes, nonzero zero-error rate, odd-letter noisy-typewriter channels, Upper bound, Vectors, zero-error capacity, zero-error codes

Koch, Tobias; Lapidoth, Amos

Asymmetric Quantizers are Better at Low SNR Inproceedings

In: 2011 IEEE International Symposium on Information Theory Proceedings, pp. 2592–2596, IEEE, St. Petersburg, 2011, ISSN: 2157-8095.

Abstract | Links | BibTeX | Tags: asymmetric one-bit quantizer, asymmetric signal constellations, channel capacity, Channel Coding, Constellation diagram, Decoding, discrete-time average-power-limited Gaussian chann, Gaussian channels, quantization, Signal to noise ratio, signal-to-noise ratio, SNR, spread spectrum communication, spread-spectrum communications, ultra wideband communication, ultrawideband communications, Upper bound

2010

Koch, Tobias; Lapidoth, Amos

Increased Capacity per Unit-Cost by Oversampling Inproceedings

In: 2010 IEEE 26-th Convention of Electrical and Electronics Engineers in Israel, pp. 000684–000688, IEEE, Eliat, 2010, ISBN: 978-1-4244-8681-6.

Abstract | Links | BibTeX | Tags: AWGN, AWGN channels, bandlimited Gaussian channel, channel capacity, Gaussian channels, increased capacity per unit cost, Information rates, one bit output quantizer, oversampling, quantisation (signal), quantization, sampling rate recovery, signal sampling

2008

Koch, Tobias; Lapidoth, Amos

On Multipath Fading Channels at High SNR Inproceedings

In: 2008 IEEE International Symposium on Information Theory, pp. 1572–1576, IEEE, Toronto, 2008, ISBN: 978-1-4244-2256-2.

Abstract | Links | BibTeX | Tags: channel capacity, Delay, discrete time systems, discrete-time channels, Entropy, Fading, fading channels, Frequency, Mathematical model, multipath channels, multipath fading channels, noncoherent channel model, Random variables, Signal to noise ratio, signal-to-noise ratios, SNR, statistics, Transmitters

Koch, Tobias; Lapidoth, Amos

Multipath Channels of Unbounded Capacity Inproceedings

In: 2008 IEEE 25th Convention of Electrical and Electronics Engineers in Israel, pp. 640–644, IEEE, Eilat, 2008, ISBN: 978-1-4244-2481-8.

Abstract | Links | BibTeX | Tags: channel capacity, discrete-time capacity, Entropy, Fading, fading channels, Frequency, H infinity control, Information rates, multipath channels, multipath fading channels, noncoherent, noncoherent capacity, path gains decay, Signal to noise ratio, statistics, Transmitters, unbounded capacity