## 2016 |

## Journal Articles |

Valera, Isabel ; Ruiz, Francisco J R; Perez-Cruz, Fernando Infinite Factorial Unbounded-State Hidden Markov Model Journal Article IEEE transactions on pattern analysis and machine intelligence, 38 (9), pp. 1816 – 1828, 2016, ISSN: 1939-3539. Abstract | Links | BibTeX | Tags: Bayes methods, Bayesian nonparametrics, CASI CAM CM, Computational modeling, GAMMA-L+ UC3M, Gibbs sampling, Hidden Markov models, Inference algorithms, Journal, Markov processes, Probability distribution, reversible jump Markov chain Monte Carlo, slice sampling, Time series, variational inference, Yttrium @article{Valera2016b, title = {Infinite Factorial Unbounded-State Hidden Markov Model}, author = {Valera, Isabel and Ruiz, Francisco J. R. and Perez-Cruz, Fernando}, url = {http://www.ncbi.nlm.nih.gov/pubmed/26571511 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7322279}, doi = {10.1109/TPAMI.2015.2498931}, issn = {1939-3539}, year = {2016}, date = {2016-09-01}, journal = {IEEE transactions on pattern analysis and machine intelligence}, volume = {38}, number = {9}, pages = {1816 -- 1828}, abstract = {There are many scenarios in artificial intelligence, signal processing or medicine, in which a temporal sequence consists of several unknown overlapping independent causes, and we are interested in accurately recovering those canonical causes. Factorial hidden Markov models (FHMMs) present the versatility to provide a good fit to these scenarios. However, in some scenarios, the number of causes or the number of states of the FHMM cannot be known or limited a priori. In this paper, we propose an infinite factorial unbounded-state hidden Markov model (IFUHMM), in which the number of parallel hidden Markov models (HMMs) and states in each HMM are potentially unbounded. We rely on a Bayesian nonparametric (BNP) prior over integer-valued matrices, in which the columns represent the Markov chains, the rows the time indexes, and the integers the state for each chain and time instant. First, we extend the existent infinite factorial binary-state HMM to allow for any number of states. Then, we modify this model to allow for an unbounded number of states and derive an MCMC-based inference algorithm that properly deals with the trade-off between the unbounded number of states and chains. We illustrate the performance of our proposed models in the power disaggregation problem.}, keywords = {Bayes methods, Bayesian nonparametrics, CASI CAM CM, Computational modeling, GAMMA-L+ UC3M, Gibbs sampling, Hidden Markov models, Inference algorithms, Journal, Markov processes, Probability distribution, reversible jump Markov chain Monte Carlo, slice sampling, Time series, variational inference, Yttrium}, pubstate = {published}, tppubtype = {article} } There are many scenarios in artificial intelligence, signal processing or medicine, in which a temporal sequence consists of several unknown overlapping independent causes, and we are interested in accurately recovering those canonical causes. Factorial hidden Markov models (FHMMs) present the versatility to provide a good fit to these scenarios. However, in some scenarios, the number of causes or the number of states of the FHMM cannot be known or limited a priori. In this paper, we propose an infinite factorial unbounded-state hidden Markov model (IFUHMM), in which the number of parallel hidden Markov models (HMMs) and states in each HMM are potentially unbounded. We rely on a Bayesian nonparametric (BNP) prior over integer-valued matrices, in which the columns represent the Markov chains, the rows the time indexes, and the integers the state for each chain and time instant. First, we extend the existent infinite factorial binary-state HMM to allow for any number of states. Then, we modify this model to allow for an unbounded number of states and derive an MCMC-based inference algorithm that properly deals with the trade-off between the unbounded number of states and chains. We illustrate the performance of our proposed models in the power disaggregation problem. |

Valera, Isabel ; Ruiz, Francisco J R; Perez-Cruz, Fernando Infinite Factorial Unbounded-State Hidden Markov Model Journal Article IEEE transactions on pattern analysis and machine intelligence, To appear (99), pp. 1, 2016, ISSN: 1939-3539. Abstract | Links | BibTeX | Tags: Bayes methods, Bayesian nonparametrics, CASI CAM CM, Computational modeling, GAMMA-L+ UC3M, Gibbs sampling, Hidden Markov models, Inference algorithms, Markov processes, Probability distribution, reversible jump Markov chain Monte Carlo, slice sampling, Time series, variational inference, Yttrium @article{Valera2016, title = {Infinite Factorial Unbounded-State Hidden Markov Model}, author = {Valera, Isabel and Ruiz, Francisco J. R. and Perez-Cruz, Fernando}, url = {http://www.ncbi.nlm.nih.gov/pubmed/26571511 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7322279}, doi = {10.1109/TPAMI.2015.2498931}, issn = {1939-3539}, year = {2016}, date = {2016-01-01}, journal = {IEEE transactions on pattern analysis and machine intelligence}, volume = {To appear}, number = {99}, pages = {1}, abstract = {There are many scenarios in artificial intelligence, signal processing or medicine, in which a temporal sequence consists of several unknown overlapping independent causes, and we are interested in accurately recovering those canonical causes. Factorial hidden Markov models (FHMMs) present the versatility to provide a good fit to these scenarios. However, in some scenarios, the number of causes or the number of states of the FHMM cannot be known or limited a priori. In this paper, we propose an infinite factorial unbounded-state hidden Markov model (IFUHMM), in which the number of parallel hidden Markov models (HMMs) and states in each HMM are potentially unbounded. We rely on a Bayesian nonparametric (BNP) prior over integer-valued matrices, in which the columns represent the Markov chains, the rows the time indexes, and the integers the state for each chain and time instant. First, we extend the existent infinite factorial binary-state HMM to allow for any number of states. Then, we modify this model to allow for an unbounded number of states and derive an MCMC-based inference algorithm that properly deals with the trade-off between the unbounded number of states and chains. We illustrate the performance of our proposed models in the power disaggregation problem.}, keywords = {Bayes methods, Bayesian nonparametrics, CASI CAM CM, Computational modeling, GAMMA-L+ UC3M, Gibbs sampling, Hidden Markov models, Inference algorithms, Markov processes, Probability distribution, reversible jump Markov chain Monte Carlo, slice sampling, Time series, variational inference, Yttrium}, pubstate = {published}, tppubtype = {article} } There are many scenarios in artificial intelligence, signal processing or medicine, in which a temporal sequence consists of several unknown overlapping independent causes, and we are interested in accurately recovering those canonical causes. Factorial hidden Markov models (FHMMs) present the versatility to provide a good fit to these scenarios. However, in some scenarios, the number of causes or the number of states of the FHMM cannot be known or limited a priori. In this paper, we propose an infinite factorial unbounded-state hidden Markov model (IFUHMM), in which the number of parallel hidden Markov models (HMMs) and states in each HMM are potentially unbounded. We rely on a Bayesian nonparametric (BNP) prior over integer-valued matrices, in which the columns represent the Markov chains, the rows the time indexes, and the integers the state for each chain and time instant. First, we extend the existent infinite factorial binary-state HMM to allow for any number of states. Then, we modify this model to allow for an unbounded number of states and derive an MCMC-based inference algorithm that properly deals with the trade-off between the unbounded number of states and chains. We illustrate the performance of our proposed models in the power disaggregation problem. |

## 2014 |

## Journal Articles |

Tauste Campo, Adria ; Vazquez-Vilar, Gonzalo ; Guillén i Fàbregas, Albert ; Koch, Tobias ; Martinez, Alfonso A Derivation of the Source-Channel Error Exponent Using Nonidentical Product Distributions Journal Article IEEE Transactions on Information Theory, 60 (6), pp. 3209–3217, 2014, ISSN: 0018-9448. Abstract | Links | BibTeX | Tags: ALCIT, Channel Coding, COMONSENS, DEIPRO, error probability, joint source-channel coding, Joints, MobileNET, Probability distribution, product distributions, random coding, Reliability, reliability function, sphere-packing bound, Upper bound @article{TausteCampo2014, title = {A Derivation of the Source-Channel Error Exponent Using Nonidentical Product Distributions}, author = {Tauste Campo, Adria and Vazquez-Vilar, Gonzalo and Guillén i Fàbregas, Albert and Koch, Tobias and Martinez, Alfonso}, url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6803047 http://www.tsc.uc3m.es/~koch/files/IEEE_TIT_60(6).pdf}, issn = {0018-9448}, year = {2014}, date = {2014-01-01}, journal = {IEEE Transactions on Information Theory}, volume = {60}, number = {6}, pages = {3209--3217}, publisher = {IEEE}, abstract = {This paper studies the random-coding exponent of joint source-channel coding for a scheme where source messages are assigned to disjoint subsets (referred to as classes), and codewords are independently generated according to a distribution that depends on the class index of the source message. For discrete memoryless systems, two optimally chosen classes and product distributions are found to be sufficient to attain the sphere-packing exponent in those cases where it is tight.}, keywords = {ALCIT, Channel Coding, COMONSENS, DEIPRO, error probability, joint source-channel coding, Joints, MobileNET, Probability distribution, product distributions, random coding, Reliability, reliability function, sphere-packing bound, Upper bound}, pubstate = {published}, tppubtype = {article} } This paper studies the random-coding exponent of joint source-channel coding for a scheme where source messages are assigned to disjoint subsets (referred to as classes), and codewords are independently generated according to a distribution that depends on the class index of the source message. For discrete memoryless systems, two optimally chosen classes and product distributions are found to be sufficient to attain the sphere-packing exponent in those cases where it is tight. |

## 2009 |

## Inproceedings |

Martino, Luca ; Miguez, Joaquin A Novel Rejection Sampling Scheme for Posterior Probability Distributions Inproceedings 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2921–2924, IEEE, Taipei, 2009, ISSN: 1520-6149. Abstract | Links | BibTeX | Tags: Additive noise, arbitrary target probability distributions, Bayes methods, Bayesian methods, Monte Carlo integration, Monte Carlo methods, Monte Carlo techniques, Overbounding, posterior probability distributions, Probability density function, Probability distribution, Proposals, Rejection sampling, rejection sampling scheme, Sampling methods, Signal processing algorithms, signal sampling, Upper bound @inproceedings{Martino2009, title = {A Novel Rejection Sampling Scheme for Posterior Probability Distributions}, author = {Martino, Luca and Miguez, Joaquin}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4960235}, issn = {1520-6149}, year = {2009}, date = {2009-01-01}, booktitle = {2009 IEEE International Conference on Acoustics, Speech and Signal Processing}, pages = {2921--2924}, publisher = {IEEE}, address = {Taipei}, abstract = {Rejection sampling (RS) is a well-known method to draw from arbitrary target probability distributions, which has important applications by itself or as a building block for more sophisticated Monte Carlo techniques. The main limitation to the use of RS is the need to find an adequate upper bound for the ratio of the target probability density function (pdf) over the proposal pdf from which the samples are generated. There are no general methods to analytically find this bound, except in the particular case in which the target pdf is log-concave. In this paper we adopt a Bayesian view of the problem and propose a general RS scheme to draw from the posterior pdf of a signal of interest using its prior density as a proposal function. The method enables the analytical calculation of the bound and can be applied to a large class of target densities. We illustrate its use with a simple numerical example.}, keywords = {Additive noise, arbitrary target probability distributions, Bayes methods, Bayesian methods, Monte Carlo integration, Monte Carlo methods, Monte Carlo techniques, Overbounding, posterior probability distributions, Probability density function, Probability distribution, Proposals, Rejection sampling, rejection sampling scheme, Sampling methods, Signal processing algorithms, signal sampling, Upper bound}, pubstate = {published}, tppubtype = {inproceedings} } Rejection sampling (RS) is a well-known method to draw from arbitrary target probability distributions, which has important applications by itself or as a building block for more sophisticated Monte Carlo techniques. The main limitation to the use of RS is the need to find an adequate upper bound for the ratio of the target probability density function (pdf) over the proposal pdf from which the samples are generated. There are no general methods to analytically find this bound, except in the particular case in which the target pdf is log-concave. In this paper we adopt a Bayesian view of the problem and propose a general RS scheme to draw from the posterior pdf of a signal of interest using its prior density as a proposal function. The method enables the analytical calculation of the bound and can be applied to a large class of target densities. We illustrate its use with a simple numerical example. |

Martino, Luca ; Miguez, Joaquin An Adaptive Accept/Reject Sampling Algorithm for Posterior Probability Distributions Inproceedings 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, pp. 45–48, IEEE, Cardiff, 2009, ISBN: 978-1-4244-2709-3. Abstract | Links | BibTeX | Tags: adaptive accept/reject sampling, Adaptive rejection sampling, arbitrary target probability distributions, Computer Simulation, Filtering, Monte Carlo integration, Monte Carlo methods, posterior probability distributions, Probability, Probability density function, Probability distribution, Proposals, Rejection sampling, Sampling methods, sensor networks, Signal processing algorithms, signal sampling, Testing @inproceedings{Martino2009b, title = {An Adaptive Accept/Reject Sampling Algorithm for Posterior Probability Distributions}, author = {Martino, Luca and Miguez, Joaquin}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5278644}, isbn = {978-1-4244-2709-3}, year = {2009}, date = {2009-01-01}, booktitle = {2009 IEEE/SP 15th Workshop on Statistical Signal Processing}, pages = {45--48}, publisher = {IEEE}, address = {Cardiff}, abstract = {Accept/reject sampling is a well-known method to generate random samples from arbitrary target probability distributions. It demands the design of a suitable proposal probability density function (pdf) from which candidate samples can be drawn. These samples are either accepted or rejected depending on a test involving the ratio of the target and proposal densities. In this paper we introduce an adaptive method to build a sequence of proposal pdf's that approximate the target density and hence can ensure a high acceptance rate. In order to illustrate the application of the method we design an accept/reject particle filter and then assess its performance and sampling efficiency numerically, by means of computer simulations.}, keywords = {adaptive accept/reject sampling, Adaptive rejection sampling, arbitrary target probability distributions, Computer Simulation, Filtering, Monte Carlo integration, Monte Carlo methods, posterior probability distributions, Probability, Probability density function, Probability distribution, Proposals, Rejection sampling, Sampling methods, sensor networks, Signal processing algorithms, signal sampling, Testing}, pubstate = {published}, tppubtype = {inproceedings} } Accept/reject sampling is a well-known method to generate random samples from arbitrary target probability distributions. It demands the design of a suitable proposal probability density function (pdf) from which candidate samples can be drawn. These samples are either accepted or rejected depending on a test involving the ratio of the target and proposal densities. In this paper we introduce an adaptive method to build a sequence of proposal pdf's that approximate the target density and hence can ensure a high acceptance rate. In order to illustrate the application of the method we design an accept/reject particle filter and then assess its performance and sampling efficiency numerically, by means of computer simulations. |

Miguez, Joaquin ; Maiz, Cristina S; Djuric, Petar M; Crisan, Dan Sequential Monte Carlo Optimization Using Artificial State-Space Models Inproceedings 2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, pp. 268–273, IEEE, Marco Island, FL, 2009. Abstract | Links | BibTeX | Tags: Acceleration, Cost function, Design optimization, discrete-time dynamical system, Educational institutions, Mathematics, maximum a posteriori estimate, maximum likelihood estimation, minimisation, Monte Carlo methods, Optimization methods, Probability distribution, sequential Monte Carlo optimization, Sequential optimization, Signal design, State-space methods, state-space model, Stochastic optimization @inproceedings{Miguez2009, title = {Sequential Monte Carlo Optimization Using Artificial State-Space Models}, author = {Miguez, Joaquin and Maiz, Cristina S. and Djuric, Petar M. and Crisan, Dan}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4785933}, year = {2009}, date = {2009-01-01}, booktitle = {2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop}, pages = {268--273}, publisher = {IEEE}, address = {Marco Island, FL}, abstract = {We introduce a method for sequential minimization of a certain class of (possibly non-convex) cost functions with respect to a high dimensional signal of interest. The proposed approach involves the transformation of the optimization problem into one of estimation in a discrete-time dynamical system. In particular, we describe a methodology for constructing an artificial state-space model which has the signal of interest as its unobserved dynamic state. The model is "adapted" to the cost function in the sense that the maximum a posteriori (MAP) estimate of the system state is also a global minimizer of the cost function. The advantage of the estimation framework is that we can draw from a pool of sequential Monte Carlo methods, for particle approximation of probability measures in dynamic systems, that enable the numerical computation of MAP estimates. We provide examples of how to apply the proposed methodology, including some illustrative simulation results.}, keywords = {Acceleration, Cost function, Design optimization, discrete-time dynamical system, Educational institutions, Mathematics, maximum a posteriori estimate, maximum likelihood estimation, minimisation, Monte Carlo methods, Optimization methods, Probability distribution, sequential Monte Carlo optimization, Sequential optimization, Signal design, State-space methods, state-space model, Stochastic optimization}, pubstate = {published}, tppubtype = {inproceedings} } We introduce a method for sequential minimization of a certain class of (possibly non-convex) cost functions with respect to a high dimensional signal of interest. The proposed approach involves the transformation of the optimization problem into one of estimation in a discrete-time dynamical system. In particular, we describe a methodology for constructing an artificial state-space model which has the signal of interest as its unobserved dynamic state. The model is "adapted" to the cost function in the sense that the maximum a posteriori (MAP) estimate of the system state is also a global minimizer of the cost function. The advantage of the estimation framework is that we can draw from a pool of sequential Monte Carlo methods, for particle approximation of probability measures in dynamic systems, that enable the numerical computation of MAP estimates. We provide examples of how to apply the proposed methodology, including some illustrative simulation results. |