## 2009 |

Martino, Luca; Miguez, Joaquin An Adaptive Accept/Reject Sampling Algorithm for Posterior Probability Distributions Inproceedings 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, pp. 45–48, IEEE, Cardiff, 2009, ISBN: 978-1-4244-2709-3. Abstract | Links | BibTeX | Tags: adaptive accept/reject sampling, Adaptive rejection sampling, arbitrary target probability distributions, Computer Simulation, Filtering, Monte Carlo integration, Monte Carlo methods, posterior probability distributions, Probability, Probability density function, Probability distribution, Proposals, Rejection sampling, Sampling methods, sensor networks, Signal processing algorithms, signal sampling, Testing @inproceedings{Martino2009b, title = {An Adaptive Accept/Reject Sampling Algorithm for Posterior Probability Distributions}, author = {Luca Martino and Joaquin Miguez}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5278644}, isbn = {978-1-4244-2709-3}, year = {2009}, date = {2009-01-01}, booktitle = {2009 IEEE/SP 15th Workshop on Statistical Signal Processing}, pages = {45--48}, publisher = {IEEE}, address = {Cardiff}, abstract = {Accept/reject sampling is a well-known method to generate random samples from arbitrary target probability distributions. It demands the design of a suitable proposal probability density function (pdf) from which candidate samples can be drawn. These samples are either accepted or rejected depending on a test involving the ratio of the target and proposal densities. In this paper we introduce an adaptive method to build a sequence of proposal pdf's that approximate the target density and hence can ensure a high acceptance rate. In order to illustrate the application of the method we design an accept/reject particle filter and then assess its performance and sampling efficiency numerically, by means of computer simulations.}, keywords = {adaptive accept/reject sampling, Adaptive rejection sampling, arbitrary target probability distributions, Computer Simulation, Filtering, Monte Carlo integration, Monte Carlo methods, posterior probability distributions, Probability, Probability density function, Probability distribution, Proposals, Rejection sampling, Sampling methods, sensor networks, Signal processing algorithms, signal sampling, Testing}, pubstate = {published}, tppubtype = {inproceedings} } Accept/reject sampling is a well-known method to generate random samples from arbitrary target probability distributions. It demands the design of a suitable proposal probability density function (pdf) from which candidate samples can be drawn. These samples are either accepted or rejected depending on a test involving the ratio of the target and proposal densities. In this paper we introduce an adaptive method to build a sequence of proposal pdf's that approximate the target density and hence can ensure a high acceptance rate. In order to illustrate the application of the method we design an accept/reject particle filter and then assess its performance and sampling efficiency numerically, by means of computer simulations. |