All Publications

Show all


Journal Articles

Koch, Tobias ; Lapidoth, Amos

At Low SNR, Asymmetric Quantizers are Better Journal Article

IEEE Transactions on Information Theory, 59 (9), pp. 5421–5445, 2013, ISSN: 0018-9448.

Abstract | Links | BibTeX | Tags: 1-bit quantizer, asymmetric signaling constellation, asymmetric threshold quantizers, asymptotic power loss, Capacity per unit energy, channel capacity, discrete-time Gaussian channel, flash-signaling input distribution, Gaussian channel, Gaussian channels, low signal-to-noise ratio (SNR), quantisation (signal), quantization, Rayleigh channels, Rayleigh-fading channel, signal-to-noise ratio, SNR, spectral efficiency



Pastore, Adriano ; Koch, Tobias ; Fonollosa, Javier Rodriguez

Improved Capacity Lower Bounds for Fading Channels with Imperfect CSI Using Rate Splitting Inproceedings

2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, pp. 1–5, IEEE, Eilat, 2012, ISBN: 978-1-4673-4681-8.

Abstract | Links | BibTeX | Tags: channel capacity, channel capacity lower bounds, conditional entropy, Decoding, Entropy, Fading, fading channels, Gaussian channel, Gaussian channels, Gaussian random variable, imperfect channel-state information, imperfect CSI, independent Gaussian variables, linear minimum mean-square error, mean square error methods, Medard lower bound, Mutual information, Random variables, rate splitting approach, Resource management, Upper bound, wireless communications

Taborda, Camilo G; Perez-Cruz, Fernando

Mutual Information and Relative Entropy over the Binomial and Negative Binomial Channels Inproceedings

2012 IEEE International Symposium on Information Theory Proceedings, pp. 696–700, IEEE, Cambridge, MA, 2012, ISSN: 2157-8095.

Abstract | Links | BibTeX | Tags: Channel estimation, conditional mean estimation, Entropy, Estimation, estimation theoretical quantity, estimation theory, Gaussian channel, Gaussian channels, information theory concept, loss function, mean square error methods, Mutual information, negative binomial channel, Poisson channel, Random variables, relative entropy