@article{Koch2013,
title = {At Low SNR, Asymmetric Quantizers are Better},
author = {Koch, Tobias and Lapidoth, Amos},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6545291},
issn = {0018-9448},
year = {2013},
date = {2013-01-01},
journal = {IEEE Transactions on Information Theory},
volume = {59},
number = {9},
pages = {5421--5445},
abstract = {We study the capacity of the discrete-time Gaussian channel when its output is quantized with a 1-bit quantizer. We focus on the low signal-to-noise ratio (SNR) regime, where communication at very low spectral efficiencies takes place. In this regime, a symmetric threshold quantizer is known to reduce channel capacity by a factor of 2/$pi$, i.e., to cause an asymptotic power loss of approximately 2 dB. Here, it is shown that this power loss can be avoided by using asymmetric threshold quantizers and asymmetric signaling constellations. To avoid this power loss, flash-signaling input distributions are essential. Consequently, 1-bit output quantization of the Gaussian channel reduces spectral efficiency. Threshold quantizers are not only asymptotically optimal: at every fixed SNR, a threshold quantizer maximizes capacity among all 1-bit output quantizers. The picture changes on the Rayleigh-fading channel. In the noncoherent case, a 1-bit output quantizer causes an unavoidable low-SNR asymptotic power loss. In the coherent case, however, this power loss is avoidable provided that we allow the quantizer to depend on the fading level.},
keywords = {1-bit quantizer, asymmetric signaling constellation, asymmetric threshold quantizers, asymptotic power loss, Capacity per unit energy, channel capacity, discrete-time Gaussian channel, flash-signaling input distribution, Gaussian channel, Gaussian channels, low signal-to-noise ratio (SNR), quantisation (signal), quantization, Rayleigh channels, Rayleigh-fading channel, signal-to-noise ratio, SNR, spectral efficiency},
pubstate = {published},
tppubtype = {article}
}

We study the capacity of the discrete-time Gaussian channel when its output is quantized with a 1-bit quantizer. We focus on the low signal-to-noise ratio (SNR) regime, where communication at very low spectral efficiencies takes place. In this regime, a symmetric threshold quantizer is known to reduce channel capacity by a factor of 2/$pi$, i.e., to cause an asymptotic power loss of approximately 2 dB. Here, it is shown that this power loss can be avoided by using asymmetric threshold quantizers and asymmetric signaling constellations. To avoid this power loss, flash-signaling input distributions are essential. Consequently, 1-bit output quantization of the Gaussian channel reduces spectral efficiency. Threshold quantizers are not only asymptotically optimal: at every fixed SNR, a threshold quantizer maximizes capacity among all 1-bit output quantizers. The picture changes on the Rayleigh-fading channel. In the noncoherent case, a 1-bit output quantizer causes an unavoidable low-SNR asymptotic power loss. In the coherent case, however, this power loss is avoidable provided that we allow the quantizer to depend on the fading level.

@inproceedings{Koch2010,
title = {Increased Capacity per Unit-Cost by Oversampling},
author = {Koch, Tobias and Lapidoth, Amos},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5662127},
isbn = {978-1-4244-8681-6},
year = {2010},
date = {2010-01-01},
booktitle = {2010 IEEE 26-th Convention of Electrical and Electronics Engineers in Israel},
pages = {000684--000688},
publisher = {IEEE},
address = {Eliat},
abstract = {It is demonstrated that doubling the sampling rate recovers some of the loss in capacity incurred on the bandlimited Gaussian channel with a one-bit output quantizer.},
keywords = {AWGN, AWGN channels, bandlimited Gaussian channel, channel capacity, Gaussian channels, increased capacity per unit cost, Information rates, one bit output quantizer, oversampling, quantisation (signal), quantization, sampling rate recovery, signal sampling},
pubstate = {published},
tppubtype = {inproceedings}
}

It is demonstrated that doubling the sampling rate recovers some of the loss in capacity incurred on the bandlimited Gaussian channel with a one-bit output quantizer.