@inproceedings{Djuric2014,
title = {Cooperative Mesh Networks with EGC Detectors},
author = {Djuric, Petar M. and Bravo-Santos, Ángel M.},
url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6882381},
isbn = {978-1-4799-1481-4},
year = {2014},
date = {2014-01-01},
booktitle = {2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)},
pages = {225--228},
publisher = {IEEE},
address = {A Coruña},
abstract = {We address mesh networks with decode and forward relays that use binary modulations. For detection, the nodes employ equal gain combining, which is appealing because it is very easy to implement. We study the performance of these networks and compare it to that of multihop multi-branch networks. We also examine the performance of the networks when both the number of groups and total number of nodes are fixed but the topology of the network varies. We demonstrate the performance of these networks where the channels are modeled with Nakagami distributions and the noise is zero mean Gaussian},
keywords = {binary modulations, cooperative communications, cooperative mesh networks, decode and forward communication, decode and forward relays, Detectors, EGC detectors, Gaussian processes, Joints, Manganese, Mesh networks, multihop multibranch networks, Nakagami channels, Nakagami distribution, Nakagami distributions, relay networks (telecommunication), Signal to noise ratio, zero mean Gaussian},
pubstate = {published},
tppubtype = {inproceedings}
}

We address mesh networks with decode and forward relays that use binary modulations. For detection, the nodes employ equal gain combining, which is appealing because it is very easy to implement. We study the performance of these networks and compare it to that of multihop multi-branch networks. We also examine the performance of the networks when both the number of groups and total number of nodes are fixed but the topology of the network varies. We demonstrate the performance of these networks where the channels are modeled with Nakagami distributions and the noise is zero mean Gaussian

@article{Koch2013a,
title = {On Noncoherent Fading Relay Channels at High Signal-to-Noise Ratio},
author = {Koch, Tobias and Kramer, Gerhard},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6378474},
issn = {0018-9448},
year = {2013},
date = {2013-01-01},
journal = {IEEE Transactions on Information Theory},
volume = {59},
number = {4},
pages = {2221--2241},
abstract = {The capacity of noncoherent regular-fading relay channels is studied where all terminals are aware of the fading statistics but not of their realizations. It is shown that if the fading coefficient of the channel between the transmitter and the receiver can be predicted more accurately from its infinite past than the fading coefficient of the channel between the relay and the receiver, then at high signal-to-noise ratio (SNR), the relay does not increase capacity. It is further shown that if the fading coefficient of the channel between the transmitter and the relay can be predicted more accurately from its infinite past than the fading coefficient of the channel between the relay and the receiver, then at high SNR, one can achieve communication rates that are within one bit of the capacity of the multiple-input single-output fading channel that results when the transmitter and the relay can cooperate.},
keywords = {channel capacity, Channel models, Fading, fading channels, MIMO communication, multiple-input single-output fading channel statis, noncoherent, noncoherent fading relay channel capacity, radio receiver, radio receivers, radio transmitter, radio transmitters, Receivers, relay channels, relay networks (telecommunication), Relays, Signal to noise ratio, signal-to-noise ratio, SNR, statistics, time selective, Transmitters, Upper bound},
pubstate = {published},
tppubtype = {article}
}

The capacity of noncoherent regular-fading relay channels is studied where all terminals are aware of the fading statistics but not of their realizations. It is shown that if the fading coefficient of the channel between the transmitter and the receiver can be predicted more accurately from its infinite past than the fading coefficient of the channel between the relay and the receiver, then at high signal-to-noise ratio (SNR), the relay does not increase capacity. It is further shown that if the fading coefficient of the channel between the transmitter and the relay can be predicted more accurately from its infinite past than the fading coefficient of the channel between the relay and the receiver, then at high SNR, one can achieve communication rates that are within one bit of the capacity of the multiple-input single-output fading channel that results when the transmitter and the relay can cooperate.