2015 |
Stinner, Markus; Olmos, Pablo M Finite-Length Performance of Multi-Edge Protograph-Based Spatially Coupled LDPC Codes Inproceedings 2015 IEEE International Symposium on Information Theory (ISIT), pp. 889–893, IEEE, Hong Kong, 2015, ISBN: 978-1-4673-7704-1. Abstract | Links | BibTeX | Tags: binary erasure channel, Block codes, Couplings, Decoding, Error analysis, finite length performance, finite-length performance, graph theory, Iterative decoding, low density parity check codes, multiedge protograph, parity check codes, spatially coupled LDPC codes, spatially-coupled LDPC codes, Steady-state @inproceedings{Stinner2015, title = {Finite-Length Performance of Multi-Edge Protograph-Based Spatially Coupled LDPC Codes}, author = {Markus Stinner and Pablo M Olmos}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7282583}, doi = {10.1109/ISIT.2015.7282583}, isbn = {978-1-4673-7704-1}, year = {2015}, date = {2015-06-01}, booktitle = {2015 IEEE International Symposium on Information Theory (ISIT)}, pages = {889--893}, publisher = {IEEE}, address = {Hong Kong}, abstract = {The finite-length performance of multi-edge spatially coupled low-density parity-check (SC-LDPC) codes over the binary erasure channel (BEC) is analyzed. Existing scaling laws are extended to arbitrary protograph base matrices that include puncturing patterns and multiple edges between nodes. A regular protograph-based SC-LDPC construction based on the (4; 8)-regular LDPC block code works well in the waterfall region compared to more involved rate-1/2 structures proposed to improve the threshold to minimum distance trade-off. Scaling laws are also used for code design and to estimate the block length of a given SC-LDPC code ensemble to match the performance of some other code. Estimates on the performance degradation are developed if the chain length varies.}, keywords = {binary erasure channel, Block codes, Couplings, Decoding, Error analysis, finite length performance, finite-length performance, graph theory, Iterative decoding, low density parity check codes, multiedge protograph, parity check codes, spatially coupled LDPC codes, spatially-coupled LDPC codes, Steady-state}, pubstate = {published}, tppubtype = {inproceedings} } The finite-length performance of multi-edge spatially coupled low-density parity-check (SC-LDPC) codes over the binary erasure channel (BEC) is analyzed. Existing scaling laws are extended to arbitrary protograph base matrices that include puncturing patterns and multiple edges between nodes. A regular protograph-based SC-LDPC construction based on the (4; 8)-regular LDPC block code works well in the waterfall region compared to more involved rate-1/2 structures proposed to improve the threshold to minimum distance trade-off. Scaling laws are also used for code design and to estimate the block length of a given SC-LDPC code ensemble to match the performance of some other code. Estimates on the performance degradation are developed if the chain length varies. |
2014 |
Stinner, Markus; Olmos, Pablo M Analyzing Finite-length Protograph-Based Spatially Coupled LDPC Codes Inproceedings 2014 IEEE International Symposium on Information Theory, pp. 891–895, IEEE, Honolulu, 2014, ISBN: 978-1-4799-5186-4. Abstract | Links | BibTeX | Tags: binary erasure channel, covariance analysis, covariance evolution, Decoding, degree-one check nodes, Error analysis, finite-length protograph, mean evolution, Monte Carlo methods, parity check codes, peeling decoding, protograph-based SC-LDPC codes, spatially coupled low-density parity-check codes, stable decoding phase, Steady-state, Vectors @inproceedings{Stinner2014, title = {Analyzing Finite-length Protograph-Based Spatially Coupled LDPC Codes}, author = {Markus Stinner and Pablo M Olmos}, url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6874961}, isbn = {978-1-4799-5186-4}, year = {2014}, date = {2014-01-01}, booktitle = {2014 IEEE International Symposium on Information Theory}, pages = {891--895}, publisher = {IEEE}, address = {Honolulu}, abstract = {The peeling decoding for spatially coupled low-density parity-check (SC-LDPC) codes is analyzed for a binary erasure channel. An analytical calculation of the mean evolution of degree-one check nodes of protograph-based SC-LDPC codes is given and an estimate for the covariance evolution of degree-one check nodes is proposed in the stable decoding phase where the decoding wave propagates along the chain of coupled codes. Both results are verified numerically. Protograph-based SC-LDPC codes turn out to have a more robust behavior than unstructured random SC-LDPC codes. Using the analytically calculated parameters, the finite-length scaling laws for these constructions are given and verified by numerical simulations.}, keywords = {binary erasure channel, covariance analysis, covariance evolution, Decoding, degree-one check nodes, Error analysis, finite-length protograph, mean evolution, Monte Carlo methods, parity check codes, peeling decoding, protograph-based SC-LDPC codes, spatially coupled low-density parity-check codes, stable decoding phase, Steady-state, Vectors}, pubstate = {published}, tppubtype = {inproceedings} } The peeling decoding for spatially coupled low-density parity-check (SC-LDPC) codes is analyzed for a binary erasure channel. An analytical calculation of the mean evolution of degree-one check nodes of protograph-based SC-LDPC codes is given and an estimate for the covariance evolution of degree-one check nodes is proposed in the stable decoding phase where the decoding wave propagates along the chain of coupled codes. Both results are verified numerically. Protograph-based SC-LDPC codes turn out to have a more robust behavior than unstructured random SC-LDPC codes. Using the analytically calculated parameters, the finite-length scaling laws for these constructions are given and verified by numerical simulations. |