## 2016 |

## Journal Articles |

Bocharova, Irina; i Fàbregas, Albert Guillén; Kudryashov, Boris; Martinez, Alfonso; Campo, Adria Tauste; Vazquez-Vilar, Gonzalo Multi-Class Source-Channel Coding (Journal Article) IEEE Transactions on Information Theory, 62 (9), pp. 5093 – 5104, 2016. (Abstract | Links | BibTeX | Tags: Channel Coding, Complexity theory, error probability, Indexes, Journal, Maximum likelihood decoding) @article{Bocharova2016, title = {Multi-Class Source-Channel Coding}, author = {Bocharova, Irina E. and Fàbregas, Albert Guillén i and Kudryashov, Boris D. and Martinez, Alfonso and Campo, Adria Tauste and Vazquez-Vilar, Gonzalo}, url = {http://arxiv.org/abs/1410.8714}, year = {2016}, date = {2016-09-01}, journal = {IEEE Transactions on Information Theory}, volume = {62}, number = {9}, pages = {5093 -- 5104}, abstract = {This paper studies an almost-lossless source-channel coding scheme in which source messages are assigned to different classes and encoded with a channel code that depends on the class index. The code performance is analyzed by means of random-coding error exponents and validated by simulation of a low-complexity implementation using existing source and channel codes. While each class code can be seen as a concatenation of a source code and a channel code, the overall performance improves on that of separate source-channel coding and approaches that of joint source-channel coding when the number of classes increases.}, keywords = {Channel Coding, Complexity theory, error probability, Indexes, Journal, Maximum likelihood decoding}, pubstate = {published}, tppubtype = {article} } This paper studies an almost-lossless source-channel coding scheme in which source messages are assigned to different classes and encoded with a channel code that depends on the class index. The code performance is analyzed by means of random-coding error exponents and validated by simulation of a low-complexity implementation using existing source and channel codes. While each class code can be seen as a concatenation of a source code and a channel code, the overall performance improves on that of separate source-channel coding and approaches that of joint source-channel coding when the number of classes increases. |

## 2015 |

## Journal Articles |

Salamanca, Luis; Murillo-Fuentes, Juan; Olmos, Pablo; Perez-Cruz, Fernando; Verdu, Sergio Approaching the DT Bound Using Linear Codes in the Short Blocklength Regime (Journal Article) IEEE Communications Letters, 19 (2), pp. 123–126, 2015, ISSN: 1089-7798. (Abstract | Links | BibTeX | Tags: binary erasure channel, Channel Coding, Complexity theory, finite blocklength regime, LDPC codes, Maximum likelihood decoding, ML decoding, parity check codes, random coding) @article{Salamanca2014b, title = {Approaching the DT Bound Using Linear Codes in the Short Blocklength Regime}, author = {Salamanca, Luis and Murillo-Fuentes, Juan and Olmos, Pablo M. and Perez-Cruz, Fernando and Verdu, Sergio}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6957577}, doi = {10.1109/LCOMM.2014.2371032}, issn = {1089-7798}, year = {2015}, date = {2015-02-01}, journal = {IEEE Communications Letters}, volume = {19}, number = {2}, pages = {123--126}, abstract = {The dependence-testing (DT) bound is one of the strongest achievability bounds for the binary erasure channel (BEC) in the finite block length regime. In this paper, we show that maximum likelihood decoded regular low-density paritycheck (LDPC) codes with at least 5 ones per column almost achieve the DT bound. Specifically, using quasi-regular LDPC codes with block length of 256 bits, we achieve a rate that is less than 1% away from the rate predicted by the DT bound for a word error rate below 103. The results also indicate that the maximum-likelihood solution is computationally feasible for decoding block codes over the BEC with several hundred bits.}, keywords = {binary erasure channel, Channel Coding, Complexity theory, finite blocklength regime, LDPC codes, Maximum likelihood decoding, ML decoding, parity check codes, random coding}, pubstate = {published}, tppubtype = {article} } The dependence-testing (DT) bound is one of the strongest achievability bounds for the binary erasure channel (BEC) in the finite block length regime. In this paper, we show that maximum likelihood decoded regular low-density paritycheck (LDPC) codes with at least 5 ones per column almost achieve the DT bound. Specifically, using quasi-regular LDPC codes with block length of 256 bits, we achieve a rate that is less than 1% away from the rate predicted by the DT bound for a word error rate below 103. The results also indicate that the maximum-likelihood solution is computationally feasible for decoding block codes over the BEC with several hundred bits. |

## 2014 |

## Journal Articles |

Salamanca, Luis; Murillo-Fuentes, Juan; Olmos, Pablo; Perez-Cruz, Fernando; Verdu, Sergio Near DT Bound Achieving Linear Codes in the Short Blocklength Regime (Journal Article) IEEE Communications Letters, PP (99), pp. 1–1, 2014, ISSN: 1089-7798. (Abstract | Links | BibTeX | Tags: binary erasure channel, Channel Coding, Complexity theory, finite blocklength regime, LDPC codes, Maximum likelihood decoding, ML decoding, parity check codes, random coding) @article{Salamanca2014, title = {Near DT Bound Achieving Linear Codes in the Short Blocklength Regime}, author = {Salamanca, Luis and Murillo-Fuentes, Juan and Olmos, Pablo M. and Perez-Cruz, Fernando and Verdu, Sergio}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6957577}, issn = {1089-7798}, year = {2014}, date = {2014-01-01}, journal = {IEEE Communications Letters}, volume = {PP}, number = {99}, pages = {1--1}, abstract = {The dependence-testing (DT) bound is one of the strongest achievability bounds for the binary erasure channel (BEC) in the finite block length regime. In this paper, we show that maximum likelihood decoded regular low-density paritycheck (LDPC) codes with at least 5 ones per column almost achieve the DT bound. Specifically, using quasi-regular LDPC codes with block length of 256 bits, we achieve a rate that is less than 1% away from the rate predicted by the DT bound for a word error rate below 103. The results also indicate that the maximum-likelihood solution is computationally feasible for decoding block codes over the BEC with several hundred bits.}, keywords = {binary erasure channel, Channel Coding, Complexity theory, finite blocklength regime, LDPC codes, Maximum likelihood decoding, ML decoding, parity check codes, random coding}, pubstate = {published}, tppubtype = {article} } The dependence-testing (DT) bound is one of the strongest achievability bounds for the binary erasure channel (BEC) in the finite block length regime. In this paper, we show that maximum likelihood decoded regular low-density paritycheck (LDPC) codes with at least 5 ones per column almost achieve the DT bound. Specifically, using quasi-regular LDPC codes with block length of 256 bits, we achieve a rate that is less than 1% away from the rate predicted by the DT bound for a word error rate below 103. The results also indicate that the maximum-likelihood solution is computationally feasible for decoding block codes over the BEC with several hundred bits. |

## 2013 |

## Journal Articles |

Salamanca, Luis; Olmos, Pablo; Murillo-Fuentes, Juan Jose; Perez-Cruz, Fernando Tree Expectation Propagation for ML Decoding of LDPC Codes over the BEC (Journal Article) IEEE Transactions on Communications, 61 (2), pp. 465–473, 2013, ISSN: 0090-6778. (Abstract | Links | BibTeX | Tags: approximate inference, Approximation algorithms, Approximation methods, BEC, binary codes, binary erasure channel, code graph, Complexity theory, equivalent complexity, Gaussian elimination method, Gaussian processes, generalized tree-structured expectation propagatio, graphical message-passing procedure, graphical models, LDPC codes, Maximum likelihood decoding, maximum likelihood solution, ML decoding, parity check codes, peeling decoder, tree expectation propagation, tree graph, Tree graphs, tree-structured expectation propagation, tree-structured expectation propagation decoder, trees (mathematics)) @article{Salamanca2013b, title = {Tree Expectation Propagation for ML Decoding of LDPC Codes over the BEC}, author = {Salamanca, Luis and Olmos, Pablo M. and Murillo-Fuentes, Juan Jose and Perez-Cruz, Fernando}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6384612}, issn = {0090-6778}, year = {2013}, date = {2013-01-01}, journal = {IEEE Transactions on Communications}, volume = {61}, number = {2}, pages = {465--473}, abstract = {We propose a decoding algorithm for LDPC codes that achieves the maximum likelihood (ML) solution over the binary erasure channel (BEC). In this channel, the tree-structured expectation propagation (TEP) decoder improves the peeling decoder (PD) by processing check nodes of degree one and two. However, it does not achieve the ML solution, as the tree structure of the TEP allows only for approximate inference. In this paper, we provide the procedure to construct the structure needed for exact inference. This algorithm, denoted as generalized tree-structured expectation propagation (GTEP), modifies the code graph by recursively eliminating any check node and merging this information in the remaining graph. The GTEP decoder upon completion either provides the unique ML solution or a tree graph in which the number of parent nodes indicates the multiplicity of the ML solution. We also explain the algorithm as a Gaussian elimination method, relating the GTEP to other ML solutions. Compared to previous approaches, it presents an equivalent complexity, it exhibits a simpler graphical message-passing procedure and, most interesting, the algorithm can be generalized to other channels.}, keywords = {approximate inference, Approximation algorithms, Approximation methods, BEC, binary codes, binary erasure channel, code graph, Complexity theory, equivalent complexity, Gaussian elimination method, Gaussian processes, generalized tree-structured expectation propagatio, graphical message-passing procedure, graphical models, LDPC codes, Maximum likelihood decoding, maximum likelihood solution, ML decoding, parity check codes, peeling decoder, tree expectation propagation, tree graph, Tree graphs, tree-structured expectation propagation, tree-structured expectation propagation decoder, trees (mathematics)}, pubstate = {published}, tppubtype = {article} } We propose a decoding algorithm for LDPC codes that achieves the maximum likelihood (ML) solution over the binary erasure channel (BEC). In this channel, the tree-structured expectation propagation (TEP) decoder improves the peeling decoder (PD) by processing check nodes of degree one and two. However, it does not achieve the ML solution, as the tree structure of the TEP allows only for approximate inference. In this paper, we provide the procedure to construct the structure needed for exact inference. This algorithm, denoted as generalized tree-structured expectation propagation (GTEP), modifies the code graph by recursively eliminating any check node and merging this information in the remaining graph. The GTEP decoder upon completion either provides the unique ML solution or a tree graph in which the number of parent nodes indicates the multiplicity of the ML solution. We also explain the algorithm as a Gaussian elimination method, relating the GTEP to other ML solutions. Compared to previous approaches, it presents an equivalent complexity, it exhibits a simpler graphical message-passing procedure and, most interesting, the algorithm can be generalized to other channels. |

## Inproceedings |

Salamanca, Luis; Murillo-Fuentes, Juan Jose; Olmos, Pablo; Perez-Cruz, Fernando Improving the BP Estimate over the AWGN Channel Using Tree-Structured Expectation Propagation (Inproceeding) 2013 IEEE International Symposium on Information Theory, pp. 2990–2994, IEEE, Istanbul, 2013, ISSN: 2157-8095. (Abstract | Links | BibTeX | Tags: Approximation algorithms, Approximation methods, AWGN channels, BEC, belief propagation decoding, BI-AWGN channel, binary additive white Gaussian noise channel, binary erasure channel, BP estimation, Channel Coding, Complexity theory, error rate reduction, error statistics, Expectation, finite-length codes, Iterative decoding, LDPC codes, LDPC decoding, low-density parity-check decoding, Maximum likelihood decoding, parity check codes, posterior distribution, Propagation, TEP algorithm, tree-structured expectation propagation algorithm, trees (mathematics)) @inproceedings{Salamanca2013, title = {Improving the BP Estimate over the AWGN Channel Using Tree-Structured Expectation Propagation}, author = {Salamanca, Luis and Murillo-Fuentes, Juan Jose and Olmos, Pablo M. and Perez-Cruz, Fernando}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6620774}, issn = {2157-8095}, year = {2013}, date = {2013-01-01}, booktitle = {2013 IEEE International Symposium on Information Theory}, pages = {2990--2994}, publisher = {IEEE}, address = {Istanbul}, abstract = {In this paper, we propose the tree-structured expectation propagation (TEP) algorithm for low-density parity-check (LDPC) decoding over the binary additive white Gaussian noise (BI-AWGN) channel. By approximating the posterior distribution by a tree-structure factorization, the TEP has been proven to improve belief propagation (BP) decoding over the binary erasure channel (BEC). We show for the AWGN channel how the TEP decoder is also able to capture additional information disregarded by the BP solution, which leads to a noticeable reduction of the error rate for finite-length codes. We show that for the range of codes of interest, the TEP gain is obtained with a slight increase in complexity over that of the BP algorithm. An efficient way of constructing the tree-like structure is also described.}, keywords = {Approximation algorithms, Approximation methods, AWGN channels, BEC, belief propagation decoding, BI-AWGN channel, binary additive white Gaussian noise channel, binary erasure channel, BP estimation, Channel Coding, Complexity theory, error rate reduction, error statistics, Expectation, finite-length codes, Iterative decoding, LDPC codes, LDPC decoding, low-density parity-check decoding, Maximum likelihood decoding, parity check codes, posterior distribution, Propagation, TEP algorithm, tree-structured expectation propagation algorithm, trees (mathematics)}, pubstate = {published}, tppubtype = {inproceedings} } In this paper, we propose the tree-structured expectation propagation (TEP) algorithm for low-density parity-check (LDPC) decoding over the binary additive white Gaussian noise (BI-AWGN) channel. By approximating the posterior distribution by a tree-structure factorization, the TEP has been proven to improve belief propagation (BP) decoding over the binary erasure channel (BEC). We show for the AWGN channel how the TEP decoder is also able to capture additional information disregarded by the BP solution, which leads to a noticeable reduction of the error rate for finite-length codes. We show that for the range of codes of interest, the TEP gain is obtained with a slight increase in complexity over that of the BP algorithm. An efficient way of constructing the tree-like structure is also described. |

## 2011 |

## Inproceedings |

Salamanca, Luis; Olmos, Pablo; Murillo-Fuentes, Juan Jose; Perez-Cruz, Fernando MAP Decoding for LDPC Codes over the Binary Erasure Channel (Inproceeding) 2011 IEEE Information Theory Workshop, pp. 145–149, IEEE, Paraty, 2011, ISBN: 978-1-4577-0437-6. (Abstract | Links | BibTeX | Tags: binary erasure channel, Channel Coding, computational complexity, Decoding, generalized peeling decoder, generalized tree-structured expectation propagatio, graphical models, Iterative decoding, LDPC codes, MAP decoding, MAP decoding algorithm, Maximum likelihood decoding, parity check codes, TEP decoder, tree graph theory, Tree graphs, tree-structured expectation propagation, trees (mathematics)) @inproceedings{Salamanca2011a, title = {MAP Decoding for LDPC Codes over the Binary Erasure Channel}, author = {Salamanca, Luis and Olmos, Pablo M. and Murillo-Fuentes, Juan Jose and Perez-Cruz, Fernando}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6089364}, isbn = {978-1-4577-0437-6}, year = {2011}, date = {2011-01-01}, booktitle = {2011 IEEE Information Theory Workshop}, pages = {145--149}, publisher = {IEEE}, address = {Paraty}, abstract = {In this paper, we propose a decoding algorithm for LDPC codes that achieves the MAP solution over the BEC. This algorithm, denoted as generalized tree-structured expectation propagation (GTEP), extends the idea of our previous work, the TEP decoder. The GTEP modifies the graph by eliminating a check node of any degree and merging this information with the remaining graph. The GTEP decoder upon completion either provides the unique MAP solution or a tree graph in which the number of parent nodes indicates the multiplicity of the MAP solution. This algorithm can be easily described for the BEC, and it can be cast as a generalized peeling decoder. The GTEP naturally optimizes the complexity of the decoder, by looking for checks nodes of minimum degree to be eliminated first.}, keywords = {binary erasure channel, Channel Coding, computational complexity, Decoding, generalized peeling decoder, generalized tree-structured expectation propagatio, graphical models, Iterative decoding, LDPC codes, MAP decoding, MAP decoding algorithm, Maximum likelihood decoding, parity check codes, TEP decoder, tree graph theory, Tree graphs, tree-structured expectation propagation, trees (mathematics)}, pubstate = {published}, tppubtype = {inproceedings} } In this paper, we propose a decoding algorithm for LDPC codes that achieves the MAP solution over the BEC. This algorithm, denoted as generalized tree-structured expectation propagation (GTEP), extends the idea of our previous work, the TEP decoder. The GTEP modifies the graph by eliminating a check node of any degree and merging this information with the remaining graph. The GTEP decoder upon completion either provides the unique MAP solution or a tree graph in which the number of parent nodes indicates the multiplicity of the MAP solution. This algorithm can be easily described for the BEC, and it can be cast as a generalized peeling decoder. The GTEP naturally optimizes the complexity of the decoder, by looking for checks nodes of minimum degree to be eliminated first. |

## 2010 |

## Inproceedings |

Salamanca, Luis; Jose Murillo-Fuentes, Juan; Perez-Cruz, Fernando Bayesian BCJR for Channel Equalization and Decoding (Inproceeding) 2010 IEEE International Workshop on Machine Learning for Signal Processing, pp. 53–58, IEEE, Kittila, 2010, ISSN: 1551-2541. (Abstract | Links | BibTeX | Tags: a posteriori probability, Bayes methods, Bayesian BCJR, Bayesian methods, Bit error rate, channel decoding, channel estate information, Channel estimation, Decoding, digital communication, digital communications, equalisers, Equalizers, error statistics, Markov processes, Maximum likelihood decoding, maximum likelihood estimation, multipath channel, probabilistic channel equalization, Probability, single input single output model, SISO model, statistical information, Training) @inproceedings{Salamanca2010, title = {Bayesian BCJR for Channel Equalization and Decoding}, author = {Salamanca, Luis and Jose Murillo-Fuentes, Juan and Perez-Cruz, Fernando}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5589201}, issn = {1551-2541}, year = {2010}, date = {2010-01-01}, booktitle = {2010 IEEE International Workshop on Machine Learning for Signal Processing}, pages = {53--58}, publisher = {IEEE}, address = {Kittila}, abstract = {In this paper we focus on the probabilistic channel equalization in digital communications. We face the single input single output (SISO) model to show how the statistical information about the multipath channel can be exploited to further improve our estimation of the a posteriori probabilities (APP) during the equalization process. We consider not only the uncertainty due to the noise in the channel, but also in the estimate of the channel estate information (CSI). Thus, we resort to a Bayesian approach for the computation of the APP. This novel algorithm has the same complexity as the BCJR, exhibiting lower bit error rate at the output of the channel decoder than the standard BCJR that considers maximum likelihood (ML) to estimate the CSI.}, keywords = {a posteriori probability, Bayes methods, Bayesian BCJR, Bayesian methods, Bit error rate, channel decoding, channel estate information, Channel estimation, Decoding, digital communication, digital communications, equalisers, Equalizers, error statistics, Markov processes, Maximum likelihood decoding, maximum likelihood estimation, multipath channel, probabilistic channel equalization, Probability, single input single output model, SISO model, statistical information, Training}, pubstate = {published}, tppubtype = {inproceedings} } In this paper we focus on the probabilistic channel equalization in digital communications. We face the single input single output (SISO) model to show how the statistical information about the multipath channel can be exploited to further improve our estimation of the a posteriori probabilities (APP) during the equalization process. We consider not only the uncertainty due to the noise in the channel, but also in the estimate of the channel estate information (CSI). Thus, we resort to a Bayesian approach for the computation of the APP. This novel algorithm has the same complexity as the BCJR, exhibiting lower bit error rate at the output of the channel decoder than the standard BCJR that considers maximum likelihood (ML) to estimate the CSI. |

Salamanca, Luis; Murillo-Fuentes, Juan Jose; Perez-Cruz, Fernando Channel Decoding with a Bayesian Equalizer (Inproceeding) 2010 IEEE International Symposium on Information Theory, pp. 1998–2002, IEEE, Austin, TX, 2010, ISBN: 978-1-4244-7892-7. (Abstract | Links | BibTeX | Tags: a posteriori probability, Bayesian equalizer, Bayesian methods, BER, Bit error rate, Channel Coding, channel decoding, channel estate information, Communication channels, Decoding, equalisers, Equalizers, error statistics, low-density parity-check decoders, LPDC decoders, Maximum likelihood decoding, maximum likelihood detection, maximum likelihood estimation, Noise reduction, parity check codes, Probability, Uncertainty) @inproceedings{Salamanca2010a, title = {Channel Decoding with a Bayesian Equalizer}, author = {Salamanca, Luis and Murillo-Fuentes, Juan Jose and Perez-Cruz, Fernando}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5513348}, isbn = {978-1-4244-7892-7}, year = {2010}, date = {2010-01-01}, booktitle = {2010 IEEE International Symposium on Information Theory}, pages = {1998--2002}, publisher = {IEEE}, address = {Austin, TX}, abstract = {Low-density parity-check (LPDC) decoders assume the channel estate information (CSI) is known and they have the true a posteriori probability (APP) for each transmitted bit. But in most cases of interest, the CSI needs to be estimated with the help of a short training sequence and the LDPC decoder has to decode the received word using faulty APP estimates. In this paper, we study the uncertainty in the CSI estimate and how it affects the bit error rate (BER) output by the LDPC decoder. To improve these APP estimates, we propose a Bayesian equalizer that takes into consideration not only the uncertainty due to the noise in the channel, but also the uncertainty in the CSI estimate, reducing the BER after the LDPC decoder.}, keywords = {a posteriori probability, Bayesian equalizer, Bayesian methods, BER, Bit error rate, Channel Coding, channel decoding, channel estate information, Communication channels, Decoding, equalisers, Equalizers, error statistics, low-density parity-check decoders, LPDC decoders, Maximum likelihood decoding, maximum likelihood detection, maximum likelihood estimation, Noise reduction, parity check codes, Probability, Uncertainty}, pubstate = {published}, tppubtype = {inproceedings} } Low-density parity-check (LPDC) decoders assume the channel estate information (CSI) is known and they have the true a posteriori probability (APP) for each transmitted bit. But in most cases of interest, the CSI needs to be estimated with the help of a short training sequence and the LDPC decoder has to decode the received word using faulty APP estimates. In this paper, we study the uncertainty in the CSI estimate and how it affects the bit error rate (BER) output by the LDPC decoder. To improve these APP estimates, we propose a Bayesian equalizer that takes into consideration not only the uncertainty due to the noise in the channel, but also the uncertainty in the CSI estimate, reducing the BER after the LDPC decoder. |

## 2009 |

## Inproceedings |

Bravo-Santos, Ángel; Djuric, Petar Cooperative Relay Communications in Mesh Networks (Inproceeding) 2009 IEEE 10th Workshop on Signal Processing Advances in Wireless Communications, pp. 499–503, IEEE, Perugia, 2009, ISBN: 978-1-4244-3695-8. (Abstract | Links | BibTeX | Tags: binary transmission, bit error probability, Bit error rate, cooperative relay communications, decode-and-forward relays, Detectors, error statistics, Maximum likelihood decoding, maximum likelihood detection, Mesh networks, mesh wireless networks, multi-hop networks, Network topology, optimal node decision rules, Peer to peer computing, radio networks, Relays, spread spectrum communication, telecommunication network topology, Wireless Sensor Networks) @inproceedings{Bravo-Santos2009, title = {Cooperative Relay Communications in Mesh Networks}, author = {Bravo-Santos, Ángel M. and Djuric, Petar M.}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5161835}, isbn = {978-1-4244-3695-8}, year = {2009}, date = {2009-01-01}, booktitle = {2009 IEEE 10th Workshop on Signal Processing Advances in Wireless Communications}, pages = {499--503}, publisher = {IEEE}, address = {Perugia}, abstract = {In previous literature on cooperative relay communications, the emphasis has been on the study of multi-hop networks. In this paper we address mesh wireless networks that use decode-and-forward relays for which we derive the optimal node decision rules in case of binary transmission. We also obtain the expression for the overall bit error probability. We compare the mesh networks with multi-hop networks and show the improvement in performance that can be achieved with them when both networks have the same number of nodes and equal number of hops.}, keywords = {binary transmission, bit error probability, Bit error rate, cooperative relay communications, decode-and-forward relays, Detectors, error statistics, Maximum likelihood decoding, maximum likelihood detection, Mesh networks, mesh wireless networks, multi-hop networks, Network topology, optimal node decision rules, Peer to peer computing, radio networks, Relays, spread spectrum communication, telecommunication network topology, Wireless Sensor Networks}, pubstate = {published}, tppubtype = {inproceedings} } In previous literature on cooperative relay communications, the emphasis has been on the study of multi-hop networks. In this paper we address mesh wireless networks that use decode-and-forward relays for which we derive the optimal node decision rules in case of binary transmission. We also obtain the expression for the overall bit error probability. We compare the mesh networks with multi-hop networks and show the improvement in performance that can be achieved with them when both networks have the same number of nodes and equal number of hops. |