@inproceedings{Pastore2012,
title = {Improved Capacity Lower Bounds for Fading Channels with Imperfect CSI Using Rate Splitting},
author = {Adriano Pastore and Tobias Koch and Javier Rodriguez Fonollosa},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6377031},
isbn = {978-1-4673-4681-8},
year = {2012},
date = {2012-01-01},
booktitle = {2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel},
pages = {1--5},
publisher = {IEEE},
address = {Eilat},
abstract = {As shown by Medard (“The effect upon channel capacity in wireless communications of perfect and imperfect knowledge of the channel,” IEEE Trans. Inform. Theory, May 2000), the capacity of fading channels with imperfect channel-state information (CSI) can be lower-bounded by assuming a Gaussian channel input X, and by upper-bounding the conditional entropy h(XY, Ĥ), conditioned on the channel output Y and the CSI Ĥ, by the entropy of a Gaussian random variable with variance equal to the linear minimum mean-square error in estimating X from (Y, Ĥ). We demonstrate that, by using a rate-splitting approach, this lower bound can be sharpened: we show that by expressing the Gaussian input X as as the sum of two independent Gaussian variables X(1) and X(2), and by applying Medard's lower bound first to analyze the mutual information between X(1) and Y conditioned on Ĥ while treating X(2) as noise, and by applying the lower bound then to analyze the mutual information between X(2) and Y conditioned on (X(1), Ĥ), we obtain a lower bound on the capacity that is larger than Medard's lower bound.},
keywords = {channel capacity, channel capacity lower bounds, conditional entropy, Decoding, Entropy, Fading, fading channels, Gaussian channel, Gaussian channels, Gaussian random variable, imperfect channel-state information, imperfect CSI, independent Gaussian variables, linear minimum mean-square error, mean square error methods, Medard lower bound, Mutual information, Random variables, rate splitting approach, Resource management, Upper bound, wireless communications},
pubstate = {published},
tppubtype = {inproceedings}
}

As shown by Medard (“The effect upon channel capacity in wireless communications of perfect and imperfect knowledge of the channel,” IEEE Trans. Inform. Theory, May 2000), the capacity of fading channels with imperfect channel-state information (CSI) can be lower-bounded by assuming a Gaussian channel input X, and by upper-bounding the conditional entropy h(XY, Ĥ), conditioned on the channel output Y and the CSI Ĥ, by the entropy of a Gaussian random variable with variance equal to the linear minimum mean-square error in estimating X from (Y, Ĥ). We demonstrate that, by using a rate-splitting approach, this lower bound can be sharpened: we show that by expressing the Gaussian input X as as the sum of two independent Gaussian variables X(1) and X(2), and by applying Medard's lower bound first to analyze the mutual information between X(1) and Y conditioned on Ĥ while treating X(2) as noise, and by applying the lower bound then to analyze the mutual information between X(2) and Y conditioned on (X(1), Ĥ), we obtain a lower bound on the capacity that is larger than Medard's lower bound.

@inproceedings{Goparaju2011,
title = {When to Add Another Dimension when Communicating over MIMO Channels},
author = {S Goparaju and A R Calderbank and W R Carson and Miguel R D Rodrigues and Fernando Perez-Cruz},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5946351},
issn = {1520-6149},
year = {2011},
date = {2011-01-01},
booktitle = {2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages = {3100--3103},
publisher = {IEEE},
address = {Prague},
abstract = {This paper introduces a divide and conquer approach to the design of transmit and receive filters for communication over a Multiple Input Multiple Output (MIMO) Gaussian channel subject to an average power constraint. It involves conversion to a set of parallel scalar channels, possibly with very different gains, followed by coding per sub-channel (i.e. over time) rather than coding across sub-channels (i.e. over time and space). The loss in performance is negligible at high signal-to-noise ratio (SNR) and not significant at medium SNR. The advantages are reduction in signal processing complexity and greater insight into the SNR thresholds at which a channel is first allocated power. This insight is a consequence of formulating the optimal power allocation in terms of an upper bound on error rate that is determined by parameters of the input lattice such as the minimum distance and kissing number. The resulting thresholds are given explicitly in terms of these lattice parameters. By contrast, when the optimization problem is phrased in terms of maximizing mutual information, the solution is mercury waterfilling, and the thresholds are implicit.},
keywords = {divide and conquer approach, divide and conquer methods, error probability, error rate, error statistics, Gaussian channels, Lattices, Manganese, MIMO, MIMO channel, MIMO communication, multiple input multiple output Gaussian channel, Mutual information, optimal power allocation, power allocation, power constraint, receive filter, Resource management, Signal to noise ratio, signal-to-noise ratio, transmit filter, Upper bound},
pubstate = {published},
tppubtype = {inproceedings}
}

This paper introduces a divide and conquer approach to the design of transmit and receive filters for communication over a Multiple Input Multiple Output (MIMO) Gaussian channel subject to an average power constraint. It involves conversion to a set of parallel scalar channels, possibly with very different gains, followed by coding per sub-channel (i.e. over time) rather than coding across sub-channels (i.e. over time and space). The loss in performance is negligible at high signal-to-noise ratio (SNR) and not significant at medium SNR. The advantages are reduction in signal processing complexity and greater insight into the SNR thresholds at which a channel is first allocated power. This insight is a consequence of formulating the optimal power allocation in terms of an upper bound on error rate that is determined by parameters of the input lattice such as the minimum distance and kissing number. The resulting thresholds are given explicitly in terms of these lattice parameters. By contrast, when the optimization problem is phrased in terms of maximizing mutual information, the solution is mercury waterfilling, and the thresholds are implicit.