## 2014 |

A, Pastore; Koch, Tobias; Fonollosa, Javier Rodriguez A Rate-Splitting Approach to Fading Channels With Imperfect Channel-State Information Journal Article IEEE Transactions on Information Theory, 60 (7), pp. 4266–4285, 2014, ISSN: 0018-9448. Abstract | Links | BibTeX | Tags: channel capacity, COMONSENS, DEIPRO, Entropy, Fading, fading channels, flat fading, imperfect channel-state information, MobileNET, Mutual information, OTOSiS, Random variables, Receivers, Signal to noise ratio, Upper bound @article{Pastore2014a, title = {A Rate-Splitting Approach to Fading Channels With Imperfect Channel-State Information}, author = {Pastore A and Tobias Koch and Javier Rodriguez Fonollosa}, url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6832779 http://www.tsc.uc3m.es/~koch/files/IEEE_TIT_60(7).pdf http://arxiv.org/pdf/1301.6120.pdf}, issn = {0018-9448}, year = {2014}, date = {2014-01-01}, journal = {IEEE Transactions on Information Theory}, volume = {60}, number = {7}, pages = {4266--4285}, publisher = {IEEE}, abstract = {As shown by Médard, the capacity of fading channels with imperfect channel-state information can be lower-bounded by assuming a Gaussian channel input (X) with power (P) and by upper-bounding the conditional entropy (h(X|Y,hat Ħ)) by the entropy of a Gaussian random variable with variance equal to the linear minimum mean-square error in estimating (X) from ((Y,hat Ħ)) . We demonstrate that, using a rate-splitting approach, this lower bound can be sharpened: by expressing the Gaussian input (X) as the sum of two independent Gaussian variables (X_1) and (X_2) and by applying Médard's lower bound first to bound the mutual information between (X_1) and (Y) while treating (X_2) as noise, and by applying it a second time to the mutual information between (X_2) and (Y) while assuming (X_1) to be known, we obtain a capacity lower bound that is strictly larger than Médard's lower bound. We then generalize this approach to an arbi- rary number (L) of layers, where (X) is expressed as the sum of (L) independent Gaussian random variables of respective variances (P_ell ) , (ell = 1,dotsc ,L) summing up to (P) . Among all such rate-splitting bounds, we determine the supremum over power allocations (P_ell ) and total number of layers (L) . This supremum is achieved for (L rightarrow infty ) and gives rise to an analytically expressible capacity lower bound. For Gaussian fading, this novel bound is shown to converge to the Gaussian-input mutual information as the signal-to-noise ratio (SNR) grows, provided that the variance of the channel estimation error (H-hat Ħ) tends to zero as the SNR tends to infinity.}, keywords = {channel capacity, COMONSENS, DEIPRO, Entropy, Fading, fading channels, flat fading, imperfect channel-state information, MobileNET, Mutual information, OTOSiS, Random variables, Receivers, Signal to noise ratio, Upper bound}, pubstate = {published}, tppubtype = {article} } As shown by Médard, the capacity of fading channels with imperfect channel-state information can be lower-bounded by assuming a Gaussian channel input (X) with power (P) and by upper-bounding the conditional entropy (h(X|Y,hat Ħ)) by the entropy of a Gaussian random variable with variance equal to the linear minimum mean-square error in estimating (X) from ((Y,hat Ħ)) . We demonstrate that, using a rate-splitting approach, this lower bound can be sharpened: by expressing the Gaussian input (X) as the sum of two independent Gaussian variables (X_1) and (X_2) and by applying Médard's lower bound first to bound the mutual information between (X_1) and (Y) while treating (X_2) as noise, and by applying it a second time to the mutual information between (X_2) and (Y) while assuming (X_1) to be known, we obtain a capacity lower bound that is strictly larger than Médard's lower bound. We then generalize this approach to an arbi- rary number (L) of layers, where (X) is expressed as the sum of (L) independent Gaussian random variables of respective variances (P_ell ) , (ell = 1,dotsc ,L) summing up to (P) . Among all such rate-splitting bounds, we determine the supremum over power allocations (P_ell ) and total number of layers (L) . This supremum is achieved for (L rightarrow infty ) and gives rise to an analytically expressible capacity lower bound. For Gaussian fading, this novel bound is shown to converge to the Gaussian-input mutual information as the signal-to-noise ratio (SNR) grows, provided that the variance of the channel estimation error (H-hat Ħ) tends to zero as the SNR tends to infinity. |

Campo, Adria Tauste; Vazquez-Vilar, Gonzalo; i Fàbregas, Albert Guillén; Koch, Tobias; Martinez, Alfonso A Derivation of the Source-Channel Error Exponent Using Nonidentical Product Distributions Journal Article IEEE Transactions on Information Theory, 60 (6), pp. 3209–3217, 2014, ISSN: 0018-9448. Abstract | Links | BibTeX | Tags: ALCIT, Channel Coding, COMONSENS, DEIPRO, error probability, joint source-channel coding, Joints, MobileNET, Probability distribution, product distributions, random coding, Reliability, reliability function, sphere-packing bound, Upper bound @article{TausteCampo2014, title = {A Derivation of the Source-Channel Error Exponent Using Nonidentical Product Distributions}, author = {Adria Tauste Campo and Gonzalo Vazquez-Vilar and Albert Guillén i Fàbregas and Tobias Koch and Alfonso Martinez}, url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6803047 http://www.tsc.uc3m.es/~koch/files/IEEE_TIT_60(6).pdf}, issn = {0018-9448}, year = {2014}, date = {2014-01-01}, journal = {IEEE Transactions on Information Theory}, volume = {60}, number = {6}, pages = {3209--3217}, publisher = {IEEE}, abstract = {This paper studies the random-coding exponent of joint source-channel coding for a scheme where source messages are assigned to disjoint subsets (referred to as classes), and codewords are independently generated according to a distribution that depends on the class index of the source message. For discrete memoryless systems, two optimally chosen classes and product distributions are found to be sufficient to attain the sphere-packing exponent in those cases where it is tight.}, keywords = {ALCIT, Channel Coding, COMONSENS, DEIPRO, error probability, joint source-channel coding, Joints, MobileNET, Probability distribution, product distributions, random coding, Reliability, reliability function, sphere-packing bound, Upper bound}, pubstate = {published}, tppubtype = {article} } This paper studies the random-coding exponent of joint source-channel coding for a scheme where source messages are assigned to disjoint subsets (referred to as classes), and codewords are independently generated according to a distribution that depends on the class index of the source message. For discrete memoryless systems, two optimally chosen classes and product distributions are found to be sufficient to attain the sphere-packing exponent in those cases where it is tight. |