## 2014 |

## Inproceedings |

Cespedes, Javier; Olmos, Pablo M; Sanchez-Fernandez, Matilde; Perez-Cruz, Fernando Improved Performance of LDPC-Coded MIMO Systems with EP-based Soft-Decisions Inproceedings 2014 IEEE International Symposium on Information Theory, pp. 1997–2001, IEEE, Honolulu, 2014, ISBN: 978-1-4799-5186-4. Abstract | Links | BibTeX | Tags: Approximation algorithms, Approximation methods, approximation theory, Channel Coding, channel decoder, communication complexity, complexity, Complexity theory, Detectors, encoding scheme, EP soft bit probability, EP-based soft decision, error statistics, expectation propagation, expectation-maximisation algorithm, expectation-propagation algorithm, Gaussian approximation, Gaussian channels, LDPC, LDPC coded MIMO system, Low Complexity receiver, MIMO, MIMO communication, MIMO communication systems, MIMO receiver, modern communication system, multiple input multiple output, parity check codes, per-antenna soft bit probability, posterior marginalization problem, posterior probability computation, QAM constellation, Quadrature amplitude modulation, radio receivers, signaling, spectral analysis, spectral efficiency maximization, symbol detection, telecommunication signalling, Vectors @inproceedings{Cespedes2014b, title = {Improved Performance of LDPC-Coded MIMO Systems with EP-based Soft-Decisions}, author = {Javier Cespedes and Pablo M Olmos and Matilde Sanchez-Fernandez and Fernando Perez-Cruz}, url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6875183}, isbn = {978-1-4799-5186-4}, year = {2014}, date = {2014-01-01}, booktitle = {2014 IEEE International Symposium on Information Theory}, pages = {1997--2001}, publisher = {IEEE}, address = {Honolulu}, abstract = {Modern communications systems use efficient encoding schemes, multiple-input multiple-output (MIMO) and high-order QAM constellations for maximizing spectral efficiency. However, as the dimensions of the system grow, the design of efficient and low-complexity MIMO receivers possesses technical challenges. Symbol detection can no longer rely on conventional approaches for posterior probability computation due to complexity. Marginalization of this posterior to obtain per-antenna soft-bit probabilities to be fed to a channel decoder is computationally challenging when realistic signaling is used. In this work, we propose to use Expectation Propagation (EP) algorithm to provide an accurate low-complexity Gaussian approximation to the posterior, easily solving the posterior marginalization problem. EP soft-bit probabilities are used in an LDPC-coded MIMO system, achieving outstanding performance improvement compared to similar approaches in the literature for low-complexity LDPC MIMO decoding.}, keywords = {Approximation algorithms, Approximation methods, approximation theory, Channel Coding, channel decoder, communication complexity, complexity, Complexity theory, Detectors, encoding scheme, EP soft bit probability, EP-based soft decision, error statistics, expectation propagation, expectation-maximisation algorithm, expectation-propagation algorithm, Gaussian approximation, Gaussian channels, LDPC, LDPC coded MIMO system, Low Complexity receiver, MIMO, MIMO communication, MIMO communication systems, MIMO receiver, modern communication system, multiple input multiple output, parity check codes, per-antenna soft bit probability, posterior marginalization problem, posterior probability computation, QAM constellation, Quadrature amplitude modulation, radio receivers, signaling, spectral analysis, spectral efficiency maximization, symbol detection, telecommunication signalling, Vectors}, pubstate = {published}, tppubtype = {inproceedings} } Modern communications systems use efficient encoding schemes, multiple-input multiple-output (MIMO) and high-order QAM constellations for maximizing spectral efficiency. However, as the dimensions of the system grow, the design of efficient and low-complexity MIMO receivers possesses technical challenges. Symbol detection can no longer rely on conventional approaches for posterior probability computation due to complexity. Marginalization of this posterior to obtain per-antenna soft-bit probabilities to be fed to a channel decoder is computationally challenging when realistic signaling is used. In this work, we propose to use Expectation Propagation (EP) algorithm to provide an accurate low-complexity Gaussian approximation to the posterior, easily solving the posterior marginalization problem. EP soft-bit probabilities are used in an LDPC-coded MIMO system, achieving outstanding performance improvement compared to similar approaches in the literature for low-complexity LDPC MIMO decoding. |

## 2012 |

## Journal Articles |

Salamanca, Luis; Murillo-Fuentes, Juan Jose; Perez-Cruz, Fernando Bayesian Equalization for LDPC Channel Decoding Journal Article IEEE Transactions on Signal Processing, 60 (5), pp. 2672–2676, 2012, ISSN: 1053-587X. Abstract | Links | BibTeX | Tags: Approximation methods, Bayes methods, Bayesian equalization, Bayesian estimation problem, Bayesian inference, Bayesian methods, BCJR (Bahl–Cocke–Jelinek–Raviv) algorithm, BCJR algorithm, Channel Coding, channel decoding, channel equalization, channel equalization problem, Channel estimation, channel state information, CSI, Decoding, equalisers, Equalizers, expectation propagation, expectation propagation algorithm, fading channels, graphical model representation, intersymbol interference, Kullback-Leibler divergence, LDPC, LDPC coding, low-density parity-check decoder, Modulation, parity check codes, symbol posterior estimates, Training @article{Salamanca2012b, title = {Bayesian Equalization for LDPC Channel Decoding}, author = {Luis Salamanca and Juan Jose Murillo-Fuentes and Fernando Perez-Cruz}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6129544}, issn = {1053-587X}, year = {2012}, date = {2012-01-01}, journal = {IEEE Transactions on Signal Processing}, volume = {60}, number = {5}, pages = {2672--2676}, abstract = {We describe the channel equalization problem, and its prior estimate of the channel state information (CSI), as a joint Bayesian estimation problem to improve each symbol posterior estimates at the input of the channel decoder. Our approach takes into consideration not only the uncertainty due to the noise in the channel, but also the uncertainty in the CSI estimate. However, this solution cannot be computed in linear time, because it depends on all the transmitted symbols. Hence, we also put forward an approximation for each symbol's posterior, using the expectation propagation algorithm, which is optimal from the Kullback-Leibler divergence viewpoint and yields an equalization with a complexity identical to the BCJR algorithm. We also use a graphical model representation of the full posterior, in which the proposed approximation can be readily understood. The proposed posterior estimates are more accurate than those computed using the ML estimate for the CSI. In order to illustrate this point, we measure the error rate at the output of a low-density parity-check decoder, which needs the exact posterior for each symbol to detect the incoming word and it is sensitive to a mismatch in those posterior estimates. For example, for QPSK modulation and a channel with three taps, we can expect gains over 0.5 dB with same computational complexity as the ML receiver.}, keywords = {Approximation methods, Bayes methods, Bayesian equalization, Bayesian estimation problem, Bayesian inference, Bayesian methods, BCJR (Bahl–Cocke–Jelinek–Raviv) algorithm, BCJR algorithm, Channel Coding, channel decoding, channel equalization, channel equalization problem, Channel estimation, channel state information, CSI, Decoding, equalisers, Equalizers, expectation propagation, expectation propagation algorithm, fading channels, graphical model representation, intersymbol interference, Kullback-Leibler divergence, LDPC, LDPC coding, low-density parity-check decoder, Modulation, parity check codes, symbol posterior estimates, Training}, pubstate = {published}, tppubtype = {article} } We describe the channel equalization problem, and its prior estimate of the channel state information (CSI), as a joint Bayesian estimation problem to improve each symbol posterior estimates at the input of the channel decoder. Our approach takes into consideration not only the uncertainty due to the noise in the channel, but also the uncertainty in the CSI estimate. However, this solution cannot be computed in linear time, because it depends on all the transmitted symbols. Hence, we also put forward an approximation for each symbol's posterior, using the expectation propagation algorithm, which is optimal from the Kullback-Leibler divergence viewpoint and yields an equalization with a complexity identical to the BCJR algorithm. We also use a graphical model representation of the full posterior, in which the proposed approximation can be readily understood. The proposed posterior estimates are more accurate than those computed using the ML estimate for the CSI. In order to illustrate this point, we measure the error rate at the output of a low-density parity-check decoder, which needs the exact posterior for each symbol to detect the incoming word and it is sensitive to a mismatch in those posterior estimates. For example, for QPSK modulation and a channel with three taps, we can expect gains over 0.5 dB with same computational complexity as the ML receiver. |

## 2011 |

## Inproceedings |

Olmos, Pablo M; Murillo-Fuentes, Juan Jose; Perez-Cruz, Fernando Capacity Achieving LDPC Ensembles for the TEP Decoder in Erasure Channels Inproceedings 2011 IEEE International Symposium on Information Theory Proceedings, pp. 2398–2402, IEEE, St. Petersburg, 2011, ISSN: 2157-8095. Abstract | Links | BibTeX | Tags: BP threshold, Complexity theory, Decoding, Differential equations, erasure channels, fixed-rate code, Iterative decoding, LDPC, low-density parity-check codes, MAP capacity, MAP threshold, optimisation, Optimization, optimization problem, parity check codes, TEP decoder, tree-expectation propagation decoder @inproceedings{Olmos2011b, title = {Capacity Achieving LDPC Ensembles for the TEP Decoder in Erasure Channels}, author = {Pablo M Olmos and Juan Jose Murillo-Fuentes and Fernando Perez-Cruz}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6033993}, issn = {2157-8095}, year = {2011}, date = {2011-01-01}, booktitle = {2011 IEEE International Symposium on Information Theory Proceedings}, pages = {2398--2402}, publisher = {IEEE}, address = {St. Petersburg}, abstract = {In this work we address the design of degree distributions (DD) of low-density parity-check (LDPC) codes for the tree-expectation propagation (TEP) decoder. The optimization problem to find distributions to maximize the TEP decoding threshold for a fixed-rate code can not be analytically solved. We derive a simplified optimization problem that can be easily solved since it is based in the analytic expressions of the peeling decoder. Two kinds of solutions are obtained from this problem: we either design LDPC ensembles for which the BP threshold equals the MAP threshold or we get LDPC ensembles for which the TEP threshold outperforms the BP threshold, even achieving the MAP capacity in some cases. Hence, we proved that there exist ensembles for which the MAP solution can be obtained with linear complexity even though the BP threshold does not achieve the MAP threshold.}, keywords = {BP threshold, Complexity theory, Decoding, Differential equations, erasure channels, fixed-rate code, Iterative decoding, LDPC, low-density parity-check codes, MAP capacity, MAP threshold, optimisation, Optimization, optimization problem, parity check codes, TEP decoder, tree-expectation propagation decoder}, pubstate = {published}, tppubtype = {inproceedings} } In this work we address the design of degree distributions (DD) of low-density parity-check (LDPC) codes for the tree-expectation propagation (TEP) decoder. The optimization problem to find distributions to maximize the TEP decoding threshold for a fixed-rate code can not be analytically solved. We derive a simplified optimization problem that can be easily solved since it is based in the analytic expressions of the peeling decoder. Two kinds of solutions are obtained from this problem: we either design LDPC ensembles for which the BP threshold equals the MAP threshold or we get LDPC ensembles for which the TEP threshold outperforms the BP threshold, even achieving the MAP capacity in some cases. Hence, we proved that there exist ensembles for which the MAP solution can be obtained with linear complexity even though the BP threshold does not achieve the MAP threshold. |