## 2014 |

Cespedes, Javier; Olmos, Pablo M; Sanchez-Fernandez, Matilde; Perez-Cruz, Fernando Improved Performance of LDPC-Coded MIMO Systems with EP-based Soft-Decisions Inproceedings 2014 IEEE International Symposium on Information Theory, pp. 1997–2001, IEEE, Honolulu, 2014, ISBN: 978-1-4799-5186-4. Abstract | Links | BibTeX | Tags: Approximation algorithms, Approximation methods, approximation theory, Channel Coding, channel decoder, communication complexity, complexity, Complexity theory, Detectors, encoding scheme, EP soft bit probability, EP-based soft decision, error statistics, expectation propagation, expectation-maximisation algorithm, expectation-propagation algorithm, Gaussian approximation, Gaussian channels, LDPC, LDPC coded MIMO system, Low Complexity receiver, MIMO, MIMO communication, MIMO communication systems, MIMO receiver, modern communication system, multiple input multiple output, parity check codes, per-antenna soft bit probability, posterior marginalization problem, posterior probability computation, QAM constellation, Quadrature amplitude modulation, radio receivers, signaling, spectral analysis, spectral efficiency maximization, symbol detection, telecommunication signalling, Vectors @inproceedings{Cespedes2014b, title = {Improved Performance of LDPC-Coded MIMO Systems with EP-based Soft-Decisions}, author = {Javier Cespedes and Pablo M Olmos and Matilde Sanchez-Fernandez and Fernando Perez-Cruz}, url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6875183}, isbn = {978-1-4799-5186-4}, year = {2014}, date = {2014-01-01}, booktitle = {2014 IEEE International Symposium on Information Theory}, pages = {1997--2001}, publisher = {IEEE}, address = {Honolulu}, abstract = {Modern communications systems use efficient encoding schemes, multiple-input multiple-output (MIMO) and high-order QAM constellations for maximizing spectral efficiency. However, as the dimensions of the system grow, the design of efficient and low-complexity MIMO receivers possesses technical challenges. Symbol detection can no longer rely on conventional approaches for posterior probability computation due to complexity. Marginalization of this posterior to obtain per-antenna soft-bit probabilities to be fed to a channel decoder is computationally challenging when realistic signaling is used. In this work, we propose to use Expectation Propagation (EP) algorithm to provide an accurate low-complexity Gaussian approximation to the posterior, easily solving the posterior marginalization problem. EP soft-bit probabilities are used in an LDPC-coded MIMO system, achieving outstanding performance improvement compared to similar approaches in the literature for low-complexity LDPC MIMO decoding.}, keywords = {Approximation algorithms, Approximation methods, approximation theory, Channel Coding, channel decoder, communication complexity, complexity, Complexity theory, Detectors, encoding scheme, EP soft bit probability, EP-based soft decision, error statistics, expectation propagation, expectation-maximisation algorithm, expectation-propagation algorithm, Gaussian approximation, Gaussian channels, LDPC, LDPC coded MIMO system, Low Complexity receiver, MIMO, MIMO communication, MIMO communication systems, MIMO receiver, modern communication system, multiple input multiple output, parity check codes, per-antenna soft bit probability, posterior marginalization problem, posterior probability computation, QAM constellation, Quadrature amplitude modulation, radio receivers, signaling, spectral analysis, spectral efficiency maximization, symbol detection, telecommunication signalling, Vectors}, pubstate = {published}, tppubtype = {inproceedings} } Modern communications systems use efficient encoding schemes, multiple-input multiple-output (MIMO) and high-order QAM constellations for maximizing spectral efficiency. However, as the dimensions of the system grow, the design of efficient and low-complexity MIMO receivers possesses technical challenges. Symbol detection can no longer rely on conventional approaches for posterior probability computation due to complexity. Marginalization of this posterior to obtain per-antenna soft-bit probabilities to be fed to a channel decoder is computationally challenging when realistic signaling is used. In this work, we propose to use Expectation Propagation (EP) algorithm to provide an accurate low-complexity Gaussian approximation to the posterior, easily solving the posterior marginalization problem. EP soft-bit probabilities are used in an LDPC-coded MIMO system, achieving outstanding performance improvement compared to similar approaches in the literature for low-complexity LDPC MIMO decoding. |

## 2012 |

Koch, Tobias; Martinez, Alfonso; i Fabregas, Albert Guillen The Capacity Loss of Dense Constellations Inproceedings 2012 IEEE International Symposium on Information Theory Proceedings, pp. 572–576, IEEE, Cambridge, MA, 2012, ISSN: 2157-8095. Abstract | Links | BibTeX | Tags: capacity loss, channel capacity, Constellation diagram, dense constellations, Entropy, general complex-valued additive-noise channels, high signal-to-noise ratio, loss 1.53 dB, power loss, Quadrature amplitude modulation, Random variables, signal constellations, Signal processing, Signal to noise ratio, square signal constellations, Upper bound @inproceedings{Koch2012, title = {The Capacity Loss of Dense Constellations}, author = {Tobias Koch and Alfonso Martinez and Albert Guillen i Fabregas}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6283482}, issn = {2157-8095}, year = {2012}, date = {2012-01-01}, booktitle = {2012 IEEE International Symposium on Information Theory Proceedings}, pages = {572--576}, publisher = {IEEE}, address = {Cambridge, MA}, abstract = {We determine the loss in capacity incurred by using signal constellations with a bounded support over general complex-valued additive-noise channels for suitably high signal-to-noise ratio. Our expression for the capacity loss recovers the power loss of 1.53 dB for square signal constellations.}, keywords = {capacity loss, channel capacity, Constellation diagram, dense constellations, Entropy, general complex-valued additive-noise channels, high signal-to-noise ratio, loss 1.53 dB, power loss, Quadrature amplitude modulation, Random variables, signal constellations, Signal processing, Signal to noise ratio, square signal constellations, Upper bound}, pubstate = {published}, tppubtype = {inproceedings} } We determine the loss in capacity incurred by using signal constellations with a bounded support over general complex-valued additive-noise channels for suitably high signal-to-noise ratio. Our expression for the capacity loss recovers the power loss of 1.53 dB for square signal constellations. |

## 2010 |

Perez-Cruz, Fernando; Rodrigues, Miguel R D; Verdu, Sergio MIMO Gaussian Channels With Arbitrary Inputs: Optimal Precoding and Power Allocation Journal Article IEEE Transactions on Information Theory, 56 (3), pp. 1070–1084, 2010, ISSN: 0018-9448. Abstract | Links | BibTeX | Tags: Collaborative work, Equations, fixed-point equation, Gaussian channels, Gaussian noise channels, Gaussian processes, Government, Interference, linear precoding, matrix algebra, mean square error methods, mercury-waterfilling algorithm, MIMO, MIMO communication, MIMO Gaussian channel, minimum mean-square error, minimum mean-square error (MMSE), multiple-input-multiple-output channel, multiple-input–multiple-output (MIMO) systems, Mutual information, nondiagonal precoding matrix, optimal linear precoder, optimal power allocation policy, optimal precoding, optimum power allocation, Phase shift keying, precoding, Quadrature amplitude modulation, Telecommunications, waterfilling @article{Perez-Cruz2010a, title = {MIMO Gaussian Channels With Arbitrary Inputs: Optimal Precoding and Power Allocation}, author = {Fernando Perez-Cruz and Miguel R D Rodrigues and Sergio Verdu}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5429131}, issn = {0018-9448}, year = {2010}, date = {2010-01-01}, journal = {IEEE Transactions on Information Theory}, volume = {56}, number = {3}, pages = {1070--1084}, abstract = {In this paper, we investigate the linear precoding and power allocation policies that maximize the mutual information for general multiple-input-multiple-output (MIMO) Gaussian channels with arbitrary input distributions, by capitalizing on the relationship between mutual information and minimum mean-square error (MMSE). The optimal linear precoder satisfies a fixed-point equation as a function of the channel and the input constellation. For non-Gaussian inputs, a nondiagonal precoding matrix in general increases the information transmission rate, even for parallel noninteracting channels. Whenever precoding is precluded, the optimal power allocation policy also satisfies a fixed-point equation; we put forth a generalization of the mercury/waterfilling algorithm, previously proposed for parallel noninterfering channels, in which the mercury level accounts not only for the non-Gaussian input distributions, but also for the interference among inputs.}, keywords = {Collaborative work, Equations, fixed-point equation, Gaussian channels, Gaussian noise channels, Gaussian processes, Government, Interference, linear precoding, matrix algebra, mean square error methods, mercury-waterfilling algorithm, MIMO, MIMO communication, MIMO Gaussian channel, minimum mean-square error, minimum mean-square error (MMSE), multiple-input-multiple-output channel, multiple-input–multiple-output (MIMO) systems, Mutual information, nondiagonal precoding matrix, optimal linear precoder, optimal power allocation policy, optimal precoding, optimum power allocation, Phase shift keying, precoding, Quadrature amplitude modulation, Telecommunications, waterfilling}, pubstate = {published}, tppubtype = {article} } In this paper, we investigate the linear precoding and power allocation policies that maximize the mutual information for general multiple-input-multiple-output (MIMO) Gaussian channels with arbitrary input distributions, by capitalizing on the relationship between mutual information and minimum mean-square error (MMSE). The optimal linear precoder satisfies a fixed-point equation as a function of the channel and the input constellation. For non-Gaussian inputs, a nondiagonal precoding matrix in general increases the information transmission rate, even for parallel noninteracting channels. Whenever precoding is precluded, the optimal power allocation policy also satisfies a fixed-point equation; we put forth a generalization of the mercury/waterfilling algorithm, previously proposed for parallel noninterfering channels, in which the mercury level accounts not only for the non-Gaussian input distributions, but also for the interference among inputs. |