## 2015 |

## Inproceedings |

Valera, Isabel ; Ruiz, Francisco J R; Svensson, Lennart ; Perez-Cruz, Fernando A Bayesian Nonparametric Approach for Blind Multiuser Channel Estimation Inproceedings 2015 23rd European Signal Processing Conference (EUSIPCO), pp. 2766–2770, IEEE, Nice, 2015, ISBN: 978-0-9928-6263-3. Abstract | Links | BibTeX | Tags: Bayes methods, Bayesian nonparametric, communication systems, factorial HMM, Hidden Markov models, machine-to-machine, multiuser communication, Receiving antennas, Signal to noise ratio, Transmitters @inproceedings{Valera2015, title = {A Bayesian Nonparametric Approach for Blind Multiuser Channel Estimation}, author = {Valera, Isabel and Ruiz, Francisco J. R. and Svensson, Lennart and Perez-Cruz, Fernando}, url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=7362888 http://www.eurasip.org/Proceedings/Eusipco/Eusipco2015/papers/1570096659.pdf}, doi = {10.1109/EUSIPCO.2015.7362888}, isbn = {978-0-9928-6263-3}, year = {2015}, date = {2015-08-01}, booktitle = {2015 23rd European Signal Processing Conference (EUSIPCO)}, pages = {2766--2770}, publisher = {IEEE}, address = {Nice}, abstract = {In many modern multiuser communication systems, users are allowed to enter and leave the system at any given time. Thus, the number of active users is an unknown and time-varying parameter, and the performance of the system depends on how accurately this parameter is estimated over time. We address the problem of blind joint channel parameter and data estimation in a multiuser communication channel in which the number of transmitters is not known. For that purpose, we develop a Bayesian nonparametric model based on the Markov Indian buffet process and an inference algorithm that makes use of slice sampling and particle Gibbs with ancestor sampling. Our experimental results show that the proposed approach can effectively recover the data-generating process for a wide range of scenarios.}, keywords = {Bayes methods, Bayesian nonparametric, communication systems, factorial HMM, Hidden Markov models, machine-to-machine, multiuser communication, Receiving antennas, Signal to noise ratio, Transmitters}, pubstate = {published}, tppubtype = {inproceedings} } In many modern multiuser communication systems, users are allowed to enter and leave the system at any given time. Thus, the number of active users is an unknown and time-varying parameter, and the performance of the system depends on how accurately this parameter is estimated over time. We address the problem of blind joint channel parameter and data estimation in a multiuser communication channel in which the number of transmitters is not known. For that purpose, we develop a Bayesian nonparametric model based on the Markov Indian buffet process and an inference algorithm that makes use of slice sampling and particle Gibbs with ancestor sampling. Our experimental results show that the proposed approach can effectively recover the data-generating process for a wide range of scenarios. |

## 2014 |

## Journal Articles |

Yang, W; Durisi, Giuseppe ; Koch, Tobias ; Polyanskiy, Yury Quasi-Static Multiple-Antenna Fading Channels at Finite Blocklength Journal Article IEEE Transactions on Information Theory, 60 (7), pp. 4232–4265, 2014, ISSN: 0018-9448. Abstract | Links | BibTeX | Tags: channel dispersion, Decoding, error probability, finite blocklength regime, MIMO, MIMO channel, outage probability, quasi-static fading channel, Rayleigh channels, Receivers, Transmitters @article{Yang2014, title = {Quasi-Static Multiple-Antenna Fading Channels at Finite Blocklength}, author = {Yang, W. and Durisi, Giuseppe and Koch, Tobias and Polyanskiy, Yury}, url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6802432 http://arxiv.org/abs/1311.2012}, issn = {0018-9448}, year = {2014}, date = {2014-01-01}, journal = {IEEE Transactions on Information Theory}, volume = {60}, number = {7}, pages = {4232--4265}, publisher = {IEEE}, abstract = {This paper investigates the maximal achievable rate for a given blocklength and error probability over quasi-static multiple-input multiple-output fading channels, with and without channel state information at the transmitter and/or the receiver. The principal finding is that outage capacity, despite being an asymptotic quantity, is a sharp proxy for the finite-blocklength fundamental limits of slow-fading channels. Specifically, the channel dispersion is shown to be zero regardless of whether the fading realizations are available at both transmitter and receiver, at only one of them, or at neither of them. These results follow from analytically tractable converse and achievability bounds. Numerical evaluation of these bounds verifies that zero dispersion may indeed imply fast convergence to the outage capacity as the blocklength increases. In the example of a particular 1 $,times,$ 2 single-input multiple-output Rician fading channel, the blocklength required to achieve 90% of capacity is about an order of magnitude smaller compared with the blocklength required for an AWGN channel with the same capacity. For this specific scenario, the coding/decoding schemes adopted in the LTE-Advanced standard are benchmarked against the finite-blocklength achievability and converse bounds.}, keywords = {channel dispersion, Decoding, error probability, finite blocklength regime, MIMO, MIMO channel, outage probability, quasi-static fading channel, Rayleigh channels, Receivers, Transmitters}, pubstate = {published}, tppubtype = {article} } This paper investigates the maximal achievable rate for a given blocklength and error probability over quasi-static multiple-input multiple-output fading channels, with and without channel state information at the transmitter and/or the receiver. The principal finding is that outage capacity, despite being an asymptotic quantity, is a sharp proxy for the finite-blocklength fundamental limits of slow-fading channels. Specifically, the channel dispersion is shown to be zero regardless of whether the fading realizations are available at both transmitter and receiver, at only one of them, or at neither of them. These results follow from analytically tractable converse and achievability bounds. Numerical evaluation of these bounds verifies that zero dispersion may indeed imply fast convergence to the outage capacity as the blocklength increases. In the example of a particular 1 $,times,$ 2 single-input multiple-output Rician fading channel, the blocklength required to achieve 90% of capacity is about an order of magnitude smaller compared with the blocklength required for an AWGN channel with the same capacity. For this specific scenario, the coding/decoding schemes adopted in the LTE-Advanced standard are benchmarked against the finite-blocklength achievability and converse bounds. |

## Inproceedings |

Ostman, Johan ; Yang, Wei ; Durisi, Giuseppe ; Koch, Tobias Diversity Versus Multiplexing at Finite Blocklength Inproceedings 2014 11th International Symposium on Wireless Communications Systems (ISWCS), pp. 702–706, IEEE, Barcelona, 2014, ISBN: 978-1-4799-5863-4. Abstract | Links | BibTeX | Tags: Antennas, Channel Coding, channel selectivity, Coherence, delay-sensitive ultra-reliable communication links, diversity reception, diversity-exploiting schemes, diversity-multiplexing tradeoff, Fading, finite blocklength analysis, maximum channel coding rate, multiple-antenna block-memoryless Rayleigh-fading, Multiplexing, nonasymptotic bounds, packet size, radio links, Rayleigh channels, Time-frequency analysis, Transmitters, Upper bound @inproceedings{Ostman2014, title = {Diversity Versus Multiplexing at Finite Blocklength}, author = {Ostman, Johan and Yang, Wei and Durisi, Giuseppe and Koch, Tobias}, url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6933444}, isbn = {978-1-4799-5863-4}, year = {2014}, date = {2014-01-01}, booktitle = {2014 11th International Symposium on Wireless Communications Systems (ISWCS)}, pages = {702--706}, publisher = {IEEE}, address = {Barcelona}, abstract = {A finite blocklenth analysis of the diversity-multiplexing tradeoff is presented, based on nonasymptotic bounds on the maximum channel coding rate of multiple-antenna block-memoryless Rayleigh-fading channels. The bounds in this paper allow one to numerically assess for which packet size, number of antennas, and degree of channel selectivity, diversity-exploiting schemes are close to optimal, and when instead the available spatial degrees of freedom should be used to provide spatial multiplexing. This finite blocklength view on the diversity-multiplexing tradeoff provides insights on the design of delay-sensitive ultra-reliable communication links.}, keywords = {Antennas, Channel Coding, channel selectivity, Coherence, delay-sensitive ultra-reliable communication links, diversity reception, diversity-exploiting schemes, diversity-multiplexing tradeoff, Fading, finite blocklength analysis, maximum channel coding rate, multiple-antenna block-memoryless Rayleigh-fading, Multiplexing, nonasymptotic bounds, packet size, radio links, Rayleigh channels, Time-frequency analysis, Transmitters, Upper bound}, pubstate = {published}, tppubtype = {inproceedings} } A finite blocklenth analysis of the diversity-multiplexing tradeoff is presented, based on nonasymptotic bounds on the maximum channel coding rate of multiple-antenna block-memoryless Rayleigh-fading channels. The bounds in this paper allow one to numerically assess for which packet size, number of antennas, and degree of channel selectivity, diversity-exploiting schemes are close to optimal, and when instead the available spatial degrees of freedom should be used to provide spatial multiplexing. This finite blocklength view on the diversity-multiplexing tradeoff provides insights on the design of delay-sensitive ultra-reliable communication links. |

Valera, Isabel ; Ruiz, Francisco J R; Perez-Cruz, Fernando Infinite Factorial Unbounded Hidden Markov Model for Blind Multiuser Channel Estimation Inproceedings 2014 4th International Workshop on Cognitive Information Processing (CIP), pp. 1–6, IEEE, Copenhagen, 2014, ISBN: 978-1-4799-3696-0. Abstract | Links | BibTeX | Tags: Bayes methods, Bayesian non parametrics, Bayesian nonparametric models, blind multiuser channel estimation, Channel estimation, degrees of freedom, detection problems, dispersive channel model, generative model, Hidden Markov models, HMM, inference algorithm, infinite factorial unbounded hidden Markov model, Markov chain Monte Carlo, Markov processes, MIMO, MIMO communication, MIMO communication systems, multiple-input multiple-output (MIMO), multiple-input multiple-output communication syste, receiver performance, Receivers, Signal to noise ratio, Transmitters, unbounded channel length, unbounded number, user detection @inproceedings{Valera2014a, title = {Infinite Factorial Unbounded Hidden Markov Model for Blind Multiuser Channel Estimation}, author = {Valera, Isabel and Ruiz, Francisco J. R. and Perez-Cruz, Fernando}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6844506}, isbn = {978-1-4799-3696-0}, year = {2014}, date = {2014-01-01}, booktitle = {2014 4th International Workshop on Cognitive Information Processing (CIP)}, pages = {1--6}, publisher = {IEEE}, address = {Copenhagen}, abstract = {Bayesian nonparametric models allow solving estimation and detection problems with an unbounded number of degrees of freedom. In multiuser multiple-input multiple-output (MIMO) communication systems we might not know the number of active users and the channel they face, and assuming maximal scenarios (maximum number of transmitters and maximum channel length) might degrade the receiver performance. In this paper, we propose a Bayesian nonparametric prior and its associated inference algorithm, which is able to detect an unbounded number of users with an unbounded channel length. This generative model provides the dispersive channel model for each user and a probabilistic estimate for each transmitted symbol in a fully blind manner, i.e., without the need of pilot (training) symbols.}, keywords = {Bayes methods, Bayesian non parametrics, Bayesian nonparametric models, blind multiuser channel estimation, Channel estimation, degrees of freedom, detection problems, dispersive channel model, generative model, Hidden Markov models, HMM, inference algorithm, infinite factorial unbounded hidden Markov model, Markov chain Monte Carlo, Markov processes, MIMO, MIMO communication, MIMO communication systems, multiple-input multiple-output (MIMO), multiple-input multiple-output communication syste, receiver performance, Receivers, Signal to noise ratio, Transmitters, unbounded channel length, unbounded number, user detection}, pubstate = {published}, tppubtype = {inproceedings} } Bayesian nonparametric models allow solving estimation and detection problems with an unbounded number of degrees of freedom. In multiuser multiple-input multiple-output (MIMO) communication systems we might not know the number of active users and the channel they face, and assuming maximal scenarios (maximum number of transmitters and maximum channel length) might degrade the receiver performance. In this paper, we propose a Bayesian nonparametric prior and its associated inference algorithm, which is able to detect an unbounded number of users with an unbounded channel length. This generative model provides the dispersive channel model for each user and a probabilistic estimate for each transmitted symbol in a fully blind manner, i.e., without the need of pilot (training) symbols. |

## 2013 |

## Journal Articles |

Koch, Tobias ; Kramer, Gerhard On Noncoherent Fading Relay Channels at High Signal-to-Noise Ratio Journal Article IEEE Transactions on Information Theory, 59 (4), pp. 2221–2241, 2013, ISSN: 0018-9448. Abstract | Links | BibTeX | Tags: channel capacity, Channel models, Fading, fading channels, MIMO communication, multiple-input single-output fading channel statis, noncoherent, noncoherent fading relay channel capacity, radio receiver, radio receivers, radio transmitter, radio transmitters, Receivers, relay channels, relay networks (telecommunication), Relays, Signal to noise ratio, signal-to-noise ratio, SNR, statistics, time selective, Transmitters, Upper bound @article{Koch2013a, title = {On Noncoherent Fading Relay Channels at High Signal-to-Noise Ratio}, author = {Koch, Tobias and Kramer, Gerhard}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6378474}, issn = {0018-9448}, year = {2013}, date = {2013-01-01}, journal = {IEEE Transactions on Information Theory}, volume = {59}, number = {4}, pages = {2221--2241}, abstract = {The capacity of noncoherent regular-fading relay channels is studied where all terminals are aware of the fading statistics but not of their realizations. It is shown that if the fading coefficient of the channel between the transmitter and the receiver can be predicted more accurately from its infinite past than the fading coefficient of the channel between the relay and the receiver, then at high signal-to-noise ratio (SNR), the relay does not increase capacity. It is further shown that if the fading coefficient of the channel between the transmitter and the relay can be predicted more accurately from its infinite past than the fading coefficient of the channel between the relay and the receiver, then at high SNR, one can achieve communication rates that are within one bit of the capacity of the multiple-input single-output fading channel that results when the transmitter and the relay can cooperate.}, keywords = {channel capacity, Channel models, Fading, fading channels, MIMO communication, multiple-input single-output fading channel statis, noncoherent, noncoherent fading relay channel capacity, radio receiver, radio receivers, radio transmitter, radio transmitters, Receivers, relay channels, relay networks (telecommunication), Relays, Signal to noise ratio, signal-to-noise ratio, SNR, statistics, time selective, Transmitters, Upper bound}, pubstate = {published}, tppubtype = {article} } The capacity of noncoherent regular-fading relay channels is studied where all terminals are aware of the fading statistics but not of their realizations. It is shown that if the fading coefficient of the channel between the transmitter and the receiver can be predicted more accurately from its infinite past than the fading coefficient of the channel between the relay and the receiver, then at high signal-to-noise ratio (SNR), the relay does not increase capacity. It is further shown that if the fading coefficient of the channel between the transmitter and the relay can be predicted more accurately from its infinite past than the fading coefficient of the channel between the relay and the receiver, then at high SNR, one can achieve communication rates that are within one bit of the capacity of the multiple-input single-output fading channel that results when the transmitter and the relay can cooperate. |

## Inproceedings |

Durisi, Giuseppe ; Tarable, Alberto ; Koch, Tobias On the Multiplexing Gain of MIMO Microwave Backhaul Links Affected by Phase Noise Inproceedings 2013 IEEE International Conference on Communications (ICC), pp. 3209–3214, IEEE, Budapest, 2013, ISSN: 1550-3607. Abstract | Links | BibTeX | Tags: AWGN channels, marginal distribution, Microwave antennas, microwave links, MIMO, MIMO AWGN channel, MIMO communication, MIMO microwave backhaul links, MIMO multiplexing gain, multiple-input multiple-output AWGN channel, Multiplexing, Phase noise, phase-noise processes, Receivers, Signal to noise ratio, strong phase noise, transmit signal, Transmitters @inproceedings{Durisi2013, title = {On the Multiplexing Gain of MIMO Microwave Backhaul Links Affected by Phase Noise}, author = {Durisi, Giuseppe and Tarable, Alberto and Koch, Tobias}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6655038}, issn = {1550-3607}, year = {2013}, date = {2013-01-01}, booktitle = {2013 IEEE International Conference on Communications (ICC)}, pages = {3209--3214}, publisher = {IEEE}, address = {Budapest}, abstract = {We consider a multiple-input multiple-output (MIMO) AWGN channel affected by phase noise. Focusing on the 2 × 2 case, we show that no MIMO multiplexing gain is to be expected when the phase-noise processes at each antenna are independent, memoryless in time, and with uniform marginal distribution over [0, 2$pi$] (strong phase noise), and when the transmit signal is isotropically distributed on the real plane. The scenario of independent phase-noise processes across antennas is relevant for microwave backhaul links operating in the 20-40 GHz range.}, keywords = {AWGN channels, marginal distribution, Microwave antennas, microwave links, MIMO, MIMO AWGN channel, MIMO communication, MIMO microwave backhaul links, MIMO multiplexing gain, multiple-input multiple-output AWGN channel, Multiplexing, Phase noise, phase-noise processes, Receivers, Signal to noise ratio, strong phase noise, transmit signal, Transmitters}, pubstate = {published}, tppubtype = {inproceedings} } We consider a multiple-input multiple-output (MIMO) AWGN channel affected by phase noise. Focusing on the 2 × 2 case, we show that no MIMO multiplexing gain is to be expected when the phase-noise processes at each antenna are independent, memoryless in time, and with uniform marginal distribution over [0, 2$pi$] (strong phase noise), and when the transmit signal is isotropically distributed on the real plane. The scenario of independent phase-noise processes across antennas is relevant for microwave backhaul links operating in the 20-40 GHz range. |

Yang, Wei ; Durisi, Giuseppe ; Koch, Tobias ; Polyanskiy, Yury Quasi-Static SIMO Fading Channels at Finite Blocklength Inproceedings 2013 IEEE International Symposium on Information Theory, pp. 1531–1535, IEEE, Istanbul, 2013, ISSN: 2157-8095. Abstract | Links | BibTeX | Tags: achievability bounds, AWGN channel, AWGN channels, channel capacity, channel dispersion, channel gains, Dispersion, error probability, error statistics, Fading, fading channels, fading realizations, fast convergence, finite blocklength, maximal achievable rate, numerical evaluation, outage capacity, quasistatic SIMO fading channels, Random variables, Receivers, SIMO Rician channel, single-input multiple-output, Transmitters, zero dispersion @inproceedings{Yang2013a, title = {Quasi-Static SIMO Fading Channels at Finite Blocklength}, author = {Yang, Wei and Durisi, Giuseppe and Koch, Tobias and Polyanskiy, Yury}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6620483}, issn = {2157-8095}, year = {2013}, date = {2013-01-01}, booktitle = {2013 IEEE International Symposium on Information Theory}, pages = {1531--1535}, publisher = {IEEE}, address = {Istanbul}, abstract = {We investigate the maximal achievable rate for a given blocklength and error probability over quasi-static single-input multiple-output (SIMO) fading channels. Under mild conditions on the channel gains, it is shown that the channel dispersion is zero regardless of whether the fading realizations are available at the transmitter and/or the receiver. The result follows from computationally and analytically tractable converse and achievability bounds. Through numerical evaluation, we verify that, in some scenarios, zero dispersion indeed entails fast convergence to outage capacity as the blocklength increases. In the example of a particular 1×2 SIMO Rician channel, the blocklength required to achieve 90% of capacity is about an order of magnitude smaller compared to the blocklength required for an AWGN channel with the same capacity.}, keywords = {achievability bounds, AWGN channel, AWGN channels, channel capacity, channel dispersion, channel gains, Dispersion, error probability, error statistics, Fading, fading channels, fading realizations, fast convergence, finite blocklength, maximal achievable rate, numerical evaluation, outage capacity, quasistatic SIMO fading channels, Random variables, Receivers, SIMO Rician channel, single-input multiple-output, Transmitters, zero dispersion}, pubstate = {published}, tppubtype = {inproceedings} } We investigate the maximal achievable rate for a given blocklength and error probability over quasi-static single-input multiple-output (SIMO) fading channels. Under mild conditions on the channel gains, it is shown that the channel dispersion is zero regardless of whether the fading realizations are available at the transmitter and/or the receiver. The result follows from computationally and analytically tractable converse and achievability bounds. Through numerical evaluation, we verify that, in some scenarios, zero dispersion indeed entails fast convergence to outage capacity as the blocklength increases. In the example of a particular 1×2 SIMO Rician channel, the blocklength required to achieve 90% of capacity is about an order of magnitude smaller compared to the blocklength required for an AWGN channel with the same capacity. |

## 2010 |

## Journal Articles |

Koch, Tobias ; Lapidoth, Amos Gaussian Fading Is the Worst Fading Journal Article IEEE Transactions on Information Theory, 56 (3), pp. 1158–1165, 2010, ISSN: 0018-9448. Abstract | Links | BibTeX | Tags: Additive noise, channel capacity, channels with memory, Distribution functions, ergodic fading processes, Fading, fading channels, flat fading, flat-fading channel capacity, Gaussian channels, Gaussian fading, Gaussian processes, H infinity control, high signal-to-noise ratio (SNR), Information technology, information theory, multiple-input single-output fading channels, multiplexing gain, noncoherent, noncoherent channel capacity, peak-power limited channel capacity, Signal to noise ratio, signal-to-noise ratio, single-antenna channel capacity, spectral distribution function, time-selective, Transmitters @article{Koch2010a, title = {Gaussian Fading Is the Worst Fading}, author = {Koch, Tobias and Lapidoth, Amos}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5429105}, issn = {0018-9448}, year = {2010}, date = {2010-01-01}, journal = {IEEE Transactions on Information Theory}, volume = {56}, number = {3}, pages = {1158--1165}, abstract = {The capacity of peak-power limited, single-antenna, noncoherent, flat-fading channels with memory is considered. The emphasis is on the capacity pre-log, i.e., on the limiting ratio of channel capacity to the logarithm of the signal-to-noise ratio (SNR), as the SNR tends to infinity. It is shown that, among all stationary and ergodic fading processes of a given spectral distribution function and whose law has no mass point at zero, the Gaussian process gives rise to the smallest pre-log. The assumption that the law of the fading process has no mass point at zero is essential in the sense that there exist stationary and ergodic fading processes whose law has a mass point at zero and that give rise to a smaller pre-log than the Gaussian process of equal spectral distribution function. An extension of these results to multiple-input single-output (MISO) fading channels with memory is also presented.}, keywords = {Additive noise, channel capacity, channels with memory, Distribution functions, ergodic fading processes, Fading, fading channels, flat fading, flat-fading channel capacity, Gaussian channels, Gaussian fading, Gaussian processes, H infinity control, high signal-to-noise ratio (SNR), Information technology, information theory, multiple-input single-output fading channels, multiplexing gain, noncoherent, noncoherent channel capacity, peak-power limited channel capacity, Signal to noise ratio, signal-to-noise ratio, single-antenna channel capacity, spectral distribution function, time-selective, Transmitters}, pubstate = {published}, tppubtype = {article} } The capacity of peak-power limited, single-antenna, noncoherent, flat-fading channels with memory is considered. The emphasis is on the capacity pre-log, i.e., on the limiting ratio of channel capacity to the logarithm of the signal-to-noise ratio (SNR), as the SNR tends to infinity. It is shown that, among all stationary and ergodic fading processes of a given spectral distribution function and whose law has no mass point at zero, the Gaussian process gives rise to the smallest pre-log. The assumption that the law of the fading process has no mass point at zero is essential in the sense that there exist stationary and ergodic fading processes whose law has a mass point at zero and that give rise to a smaller pre-log than the Gaussian process of equal spectral distribution function. An extension of these results to multiple-input single-output (MISO) fading channels with memory is also presented. |

Koch, Tobias ; Lapidoth, Amos On Multipath Fading Channels at High SNR Journal Article IEEE Transactions on Information Theory, 56 (12), pp. 5945–5957, 2010, ISSN: 0018-9448. Abstract | Links | BibTeX | Tags: approximation theory, capacity pre-loglog, capacity to loglog, channel capacity, channels with memory, Delay, Fading, fading channels, frequency-selective fading, high signal-to-noise ratio, high SNR, Limiting, multipath, multipath channels, noncoherent, noncoherent multipath fading channel, Receivers, Signal to noise ratio, signal-to-noise ratio, Transmitters @article{Koch2010b, title = {On Multipath Fading Channels at High SNR}, author = {Koch, Tobias and Lapidoth, Amos}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5625630}, issn = {0018-9448}, year = {2010}, date = {2010-01-01}, journal = {IEEE Transactions on Information Theory}, volume = {56}, number = {12}, pages = {5945--5957}, abstract = {A noncoherent multipath fading channel is considered, where neither the transmitter nor the receiver is cognizant of the realization of the path gains, but both are cognizant of their statistics. It is shown that if the delay spread is large in the sense that the variances of the path gains decay exponentially or slower, then capacity is bounded in the signal-to-noise ratio (SNR). For such channels, capacity does not tend to infinity as the SNR tends to infinity. In contrast, if the variances of the path gains decay faster than exponentially, then capacity is unbounded in the SNR. It is further demonstrated that if the number of paths is finite, then at high SNR capacity grows double-logarithmically with the SNR, and the capacity pre-loglog-defined as the limiting ratio of capacity to loglog(SNR) as the SNR tends to infinity-is 1 irrespective of the number of paths. The results demonstrate that at high SNR multipath fading channels with an infinite number of paths cannot be approximated by multipath fading channels with only a finite number of paths. The number of paths that are needed to approximate a multipath fading channel typically depends on the SNR and may grow to infinity as the SNR tends to infinity.}, keywords = {approximation theory, capacity pre-loglog, capacity to loglog, channel capacity, channels with memory, Delay, Fading, fading channels, frequency-selective fading, high signal-to-noise ratio, high SNR, Limiting, multipath, multipath channels, noncoherent, noncoherent multipath fading channel, Receivers, Signal to noise ratio, signal-to-noise ratio, Transmitters}, pubstate = {published}, tppubtype = {article} } A noncoherent multipath fading channel is considered, where neither the transmitter nor the receiver is cognizant of the realization of the path gains, but both are cognizant of their statistics. It is shown that if the delay spread is large in the sense that the variances of the path gains decay exponentially or slower, then capacity is bounded in the signal-to-noise ratio (SNR). For such channels, capacity does not tend to infinity as the SNR tends to infinity. In contrast, if the variances of the path gains decay faster than exponentially, then capacity is unbounded in the SNR. It is further demonstrated that if the number of paths is finite, then at high SNR capacity grows double-logarithmically with the SNR, and the capacity pre-loglog-defined as the limiting ratio of capacity to loglog(SNR) as the SNR tends to infinity-is 1 irrespective of the number of paths. The results demonstrate that at high SNR multipath fading channels with an infinite number of paths cannot be approximated by multipath fading channels with only a finite number of paths. The number of paths that are needed to approximate a multipath fading channel typically depends on the SNR and may grow to infinity as the SNR tends to infinity. |

## 2009 |

## Inproceedings |

Fresia, Maria ; Perez-Cruz, Fernando ; Poor, Vincent H Optimized Concatenated LDPC Codes for Joint Source-Channel Coding Inproceedings 2009 IEEE International Symposium on Information Theory, pp. 2131–2135, IEEE, Seoul, 2009, ISBN: 978-1-4244-4312-3. Abstract | Links | BibTeX | Tags: approximation theory, asymptotic behavior analysis, Channel Coding, combined source-channel coding, Concatenated codes, Decoding, Entropy, EXIT chart, extrinsic information transfer, H infinity control, Information analysis, joint belief propagation decoder, joint source-channel coding, low-density-parity-check code, optimized concatenated independent LDPC codes, parity check codes, Redundancy, source coding, transmitter, Transmitters @inproceedings{Fresia2009, title = {Optimized Concatenated LDPC Codes for Joint Source-Channel Coding}, author = {Fresia, Maria and Perez-Cruz, Fernando and Poor, H. Vincent}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5205766}, isbn = {978-1-4244-4312-3}, year = {2009}, date = {2009-01-01}, booktitle = {2009 IEEE International Symposium on Information Theory}, pages = {2131--2135}, publisher = {IEEE}, address = {Seoul}, abstract = {In this paper a scheme for joint source-channel coding based on low-density-parity-check (LDPC) codes is investigated. Two concatenated independent LDPC codes are used in the transmitter: one for source coding and the other for channel coding, with a joint belief propagation decoder. The asymptotic behavior is analyzed using EXtrinsic Information Transfer (EXIT) charts and this approximation is corroborated with illustrative experiments. The optimization of the degree distributions for our sparse code to maximize the information transmission rate is also considered.}, keywords = {approximation theory, asymptotic behavior analysis, Channel Coding, combined source-channel coding, Concatenated codes, Decoding, Entropy, EXIT chart, extrinsic information transfer, H infinity control, Information analysis, joint belief propagation decoder, joint source-channel coding, low-density-parity-check code, optimized concatenated independent LDPC codes, parity check codes, Redundancy, source coding, transmitter, Transmitters}, pubstate = {published}, tppubtype = {inproceedings} } In this paper a scheme for joint source-channel coding based on low-density-parity-check (LDPC) codes is investigated. Two concatenated independent LDPC codes are used in the transmitter: one for source coding and the other for channel coding, with a joint belief propagation decoder. The asymptotic behavior is analyzed using EXtrinsic Information Transfer (EXIT) charts and this approximation is corroborated with illustrative experiments. The optimization of the degree distributions for our sparse code to maximize the information transmission rate is also considered. |

## 2008 |

## Inproceedings |

Koch, Tobias ; Lapidoth, Amos On Multipath Fading Channels at High SNR Inproceedings 2008 IEEE International Symposium on Information Theory, pp. 1572–1576, IEEE, Toronto, 2008, ISBN: 978-1-4244-2256-2. Abstract | Links | BibTeX | Tags: channel capacity, Delay, discrete time systems, discrete-time channels, Entropy, Fading, fading channels, Frequency, Mathematical model, multipath channels, multipath fading channels, noncoherent channel model, Random variables, Signal to noise ratio, signal-to-noise ratios, SNR, statistics, Transmitters @inproceedings{Koch2008, title = {On Multipath Fading Channels at High SNR}, author = {Koch, Tobias and Lapidoth, Amos}, url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4595252}, isbn = {978-1-4244-2256-2}, year = {2008}, date = {2008-01-01}, booktitle = {2008 IEEE International Symposium on Information Theory}, pages = {1572--1576}, publisher = {IEEE}, address = {Toronto}, abstract = {This paper studies the capacity of discrete-time multipath fading channels. It is assumed that the number of paths is finite, i.e., that the channel output is influenced by the present and by the L previous channel inputs. A noncoherent channel model is considered where neither transmitter nor receiver are cognizant of the fading's realization, but both are aware of its statistic. The focus is on capacity at high signal-to-noise ratios (SNR). In particular, the capacity pre-loglog-defined as the limiting ratio of the capacity to loglog(SNR) as SNR tends to infinity-is studied. It is shown that, irrespective of the number of paths L, the capacity pre-loglog is 1.}, keywords = {channel capacity, Delay, discrete time systems, discrete-time channels, Entropy, Fading, fading channels, Frequency, Mathematical model, multipath channels, multipath fading channels, noncoherent channel model, Random variables, Signal to noise ratio, signal-to-noise ratios, SNR, statistics, Transmitters}, pubstate = {published}, tppubtype = {inproceedings} } This paper studies the capacity of discrete-time multipath fading channels. It is assumed that the number of paths is finite, i.e., that the channel output is influenced by the present and by the L previous channel inputs. A noncoherent channel model is considered where neither transmitter nor receiver are cognizant of the fading's realization, but both are aware of its statistic. The focus is on capacity at high signal-to-noise ratios (SNR). In particular, the capacity pre-loglog-defined as the limiting ratio of the capacity to loglog(SNR) as SNR tends to infinity-is studied. It is shown that, irrespective of the number of paths L, the capacity pre-loglog is 1. |

Koch, Tobias ; Lapidoth, Amos Multipath Channels of Unbounded Capacity Inproceedings 2008 IEEE 25th Convention of Electrical and Electronics Engineers in Israel, pp. 640–644, IEEE, Eilat, 2008, ISBN: 978-1-4244-2481-8. Abstract | Links | BibTeX | Tags: channel capacity, discrete-time capacity, Entropy, Fading, fading channels, Frequency, H infinity control, Information rates, multipath channels, multipath fading channels, noncoherent, noncoherent capacity, path gains decay, Signal to noise ratio, statistics, Transmitters, unbounded capacity @inproceedings{Koch2008b, title = {Multipath Channels of Unbounded Capacity}, author = {Koch, Tobias and Lapidoth, Amos}, url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4736611}, isbn = {978-1-4244-2481-8}, year = {2008}, date = {2008-01-01}, booktitle = {2008 IEEE 25th Convention of Electrical and Electronics Engineers in Israel}, pages = {640--644}, publisher = {IEEE}, address = {Eilat}, abstract = {The capacity of discrete-time, noncoherent, multipath fading channels is considered. It is shown that if the variances of the path gains decay faster than exponentially, then capacity is unbounded in the transmit power.}, keywords = {channel capacity, discrete-time capacity, Entropy, Fading, fading channels, Frequency, H infinity control, Information rates, multipath channels, multipath fading channels, noncoherent, noncoherent capacity, path gains decay, Signal to noise ratio, statistics, Transmitters, unbounded capacity}, pubstate = {published}, tppubtype = {inproceedings} } The capacity of discrete-time, noncoherent, multipath fading channels is considered. It is shown that if the variances of the path gains decay faster than exponentially, then capacity is unbounded in the transmit power. |