@inproceedings{Plata-Chaves2011,
title = {Optimal Neyman-Pearson Fusion in Two-Dimensional Densor Networks with Serial Architecture and Dependent Observations},
author = {Plata-Chaves, Jorge and Lazaro, M. and Artés-Rodríguez, Antonio},
url = {http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5977545&searchWithin%3Dartes+rodriguez%26sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A5977431%29},
isbn = {978-1-4577-0267-9},
year = {2011},
date = {2011-01-01},
booktitle = {Information Fusion (FUSION), 2011 Proceedings of the 14th International Conference on},
pages = {1--6},
address = {Chicago},
abstract = {In this correspondence, we consider a sensor network with serial architecture. When solving a binary distributed detection problem where the sensor observations are dependent under each one of the two possible hypothesis, each fusion stage of the network applies a local decision rule. We assume that, based on the information available at each fusion stage, the decision rules provide a binary message regarding the presence or absence of an event of interest. Under this scenario and under a Neyman-Pearson formulation, we derive the optimal decision rules associated with each fusion stage. As it happens when the sensor observations are independent, we are able to show that, under the Neyman-Pearson criterion, the optimal fusion rules of a serial configuration with dependent observations also match optimal Neyman-Pearson tests.},
keywords = {Bayesian methods, binary distributed detection problem, decision theory, dependent observations, Joints, local decision rule, Measurement uncertainty, Network topology, Neyman-Pearson criterion, optimal Neyman-Pearson fusion, optimum distributed detection, Parallel architectures, Performance evaluation, Probability density function, sensor dependent observations, sensor fusion, serial architecture, serial network topology, two-dimensional sensor networks, Wireless Sensor Networks},
pubstate = {published},
tppubtype = {inproceedings}
}

In this correspondence, we consider a sensor network with serial architecture. When solving a binary distributed detection problem where the sensor observations are dependent under each one of the two possible hypothesis, each fusion stage of the network applies a local decision rule. We assume that, based on the information available at each fusion stage, the decision rules provide a binary message regarding the presence or absence of an event of interest. Under this scenario and under a Neyman-Pearson formulation, we derive the optimal decision rules associated with each fusion stage. As it happens when the sensor observations are independent, we are able to show that, under the Neyman-Pearson criterion, the optimal fusion rules of a serial configuration with dependent observations also match optimal Neyman-Pearson tests.

@inproceedings{Bravo-Santos2009,
title = {Cooperative Relay Communications in Mesh Networks},
author = {Bravo-Santos, Ángel M. and Djuric, Petar M.},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5161835},
isbn = {978-1-4244-3695-8},
year = {2009},
date = {2009-01-01},
booktitle = {2009 IEEE 10th Workshop on Signal Processing Advances in Wireless Communications},
pages = {499--503},
publisher = {IEEE},
address = {Perugia},
abstract = {In previous literature on cooperative relay communications, the emphasis has been on the study of multi-hop networks. In this paper we address mesh wireless networks that use decode-and-forward relays for which we derive the optimal node decision rules in case of binary transmission. We also obtain the expression for the overall bit error probability. We compare the mesh networks with multi-hop networks and show the improvement in performance that can be achieved with them when both networks have the same number of nodes and equal number of hops.},
keywords = {binary transmission, bit error probability, Bit error rate, cooperative relay communications, decode-and-forward relays, Detectors, error statistics, Maximum likelihood decoding, maximum likelihood detection, Mesh networks, mesh wireless networks, multi-hop networks, Network topology, optimal node decision rules, Peer to peer computing, radio networks, Relays, spread spectrum communication, telecommunication network topology, Wireless Sensor Networks},
pubstate = {published},
tppubtype = {inproceedings}
}

In previous literature on cooperative relay communications, the emphasis has been on the study of multi-hop networks. In this paper we address mesh wireless networks that use decode-and-forward relays for which we derive the optimal node decision rules in case of binary transmission. We also obtain the expression for the overall bit error probability. We compare the mesh networks with multi-hop networks and show the improvement in performance that can be achieved with them when both networks have the same number of nodes and equal number of hops.