2012 |
Olmos, Pablo M; Perez-Cruz, Fernando; Salamanca, Luis; Murillo-Fuentes, Juan Jose Finite-Length Performance of Spatially-Coupled LDPC Codes under TEP Decoding Inproceedings 2012 IEEE Information Theory Workshop, pp. 1–6, IEEE, Lausanne, 2012, ISBN: 978-1-4673-0223-4. Links | BibTeX | Tags: asymptotic limit, belief propagation decoding, Complexity theory, convolutional codes, convolutional LDPC codes, Decoding, decoding latency, decoding threshold, erasure channel, Error analysis, error rates, finite-length analysis, finite-length performance, maximum a posteriori threshold, maximum likelihood estimation, parity check codes, regular sparse codes, spatially-coupled LDPC codes, TEP decoding, tree-structured expectation propagation, underlying regular code, very large code length, window-sliding scheme @inproceedings{Olmos2012, title = {Finite-Length Performance of Spatially-Coupled LDPC Codes under TEP Decoding}, author = {Pablo M Olmos and Fernando Perez-Cruz and Luis Salamanca and Juan Jose Murillo-Fuentes}, url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6404722}, isbn = {978-1-4673-0223-4}, year = {2012}, date = {2012-01-01}, booktitle = {2012 IEEE Information Theory Workshop}, pages = {1--6}, publisher = {IEEE}, address = {Lausanne}, keywords = {asymptotic limit, belief propagation decoding, Complexity theory, convolutional codes, convolutional LDPC codes, Decoding, decoding latency, decoding threshold, erasure channel, Error analysis, error rates, finite-length analysis, finite-length performance, maximum a posteriori threshold, maximum likelihood estimation, parity check codes, regular sparse codes, spatially-coupled LDPC codes, TEP decoding, tree-structured expectation propagation, underlying regular code, very large code length, window-sliding scheme}, pubstate = {published}, tppubtype = {inproceedings} } |