2013
Luengo, David; Via, Javier; Monzon, Sandra; Trigano, Tom; Artés-Rodríguez, Antonio
Cross-Products LASSO Proceedings Article
En: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6118–6122, IEEE, Vancouver, 2013, ISSN: 1520-6149.
Resumen | Enlaces | BibTeX | Etiquetas: Approximation methods, approximation theory, concave programming, convex programming, Cost function, cross-product LASSO cost function, Dictionaries, dictionary, Encoding, LASSO, learning (artificial intelligence), negative co-occurrence, negative cooccurrence phenomenon, nonconvex optimization problem, Signal processing, signal processing application, signal reconstruction, sparse coding, sparse learning approach, Sparse matrices, sparsity-aware learning, successive convex approximation, Vectors
@inproceedings{Luengo2013,
title = {Cross-Products LASSO},
author = {David Luengo and Javier Via and Sandra Monzon and Tom Trigano and Antonio Art\'{e}s-Rodr\'{i}guez},
url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6638840},
issn = {1520-6149},
year = {2013},
date = {2013-01-01},
booktitle = {2013 IEEE International Conference on Acoustics, Speech and Signal Processing},
pages = {6118--6122},
publisher = {IEEE},
address = {Vancouver},
abstract = {Negative co-occurrence is a common phenomenon in many signal processing applications. In some cases the signals involved are sparse, and this information can be exploited to recover them. In this paper, we present a sparse learning approach that explicitly takes into account negative co-occurrence. This is achieved by adding a novel penalty term to the LASSO cost function based on the cross-products between the reconstruction coefficients. Although the resulting optimization problem is non-convex, we develop a new and efficient method for solving it based on successive convex approximations. Results on synthetic data, for both complete and overcomplete dictionaries, are provided to validate the proposed approach.},
keywords = {Approximation methods, approximation theory, concave programming, convex programming, Cost function, cross-product LASSO cost function, Dictionaries, dictionary, Encoding, LASSO, learning (artificial intelligence), negative co-occurrence, negative cooccurrence phenomenon, nonconvex optimization problem, Signal processing, signal processing application, signal reconstruction, sparse coding, sparse learning approach, Sparse matrices, sparsity-aware learning, successive convex approximation, Vectors},
pubstate = {published},
tppubtype = {inproceedings}
}
2012
Florentino-Liaño, Blanca; O'Mahony, Niamh; Artés-Rodríguez, Antonio
Long Term Human Activity Recognition with Automatic Orientation Estimation Proceedings Article
En: 2012 IEEE International Workshop on Machine Learning for Signal Processing, pp. 1–6, IEEE, Santander, 2012, ISSN: 1551-2541.
Resumen | Enlaces | BibTeX | Etiquetas: Acceleration, Activity recognition, automatic orientation estimation, biomedical equipment, Estimation, Gravity, Hidden Markov models, human daily activity recognition, Humans, Legged locomotion, long term human activity recognition, medical signal processing, object recognition, orientation estimation, sensors, single miniature inertial sensor, time intervals, Vectors, virtual sensor orientation, wearable sensors
@inproceedings{Florentino-Liano2012b,
title = {Long Term Human Activity Recognition with Automatic Orientation Estimation},
author = {Blanca Florentino-Lia\~{n}o and Niamh O'Mahony and Antonio Art\'{e}s-Rodr\'{i}guez},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6349789},
issn = {1551-2541},
year = {2012},
date = {2012-01-01},
booktitle = {2012 IEEE International Workshop on Machine Learning for Signal Processing},
pages = {1--6},
publisher = {IEEE},
address = {Santander},
abstract = {This work deals with the elimination of sensitivity to sensor orientation in the task of human daily activity recognition using a single miniature inertial sensor. The proposed method detects time intervals of walking, automatically estimating the orientation in these intervals and transforming the observed signals to a “virtual” sensor orientation. Classification results show that excellent performance, in terms of both precision and recall (up to 100%), is achieved, for long-term recordings in real-life settings.},
keywords = {Acceleration, Activity recognition, automatic orientation estimation, biomedical equipment, Estimation, Gravity, Hidden Markov models, human daily activity recognition, Humans, Legged locomotion, long term human activity recognition, medical signal processing, object recognition, orientation estimation, sensors, single miniature inertial sensor, time intervals, Vectors, virtual sensor orientation, wearable sensors},
pubstate = {published},
tppubtype = {inproceedings}
}