2014
Cespedes, Javier; Olmos, Pablo M; Sanchez-Fernandez, Matilde; Perez-Cruz, Fernando
Improved Performance of LDPC-Coded MIMO Systems with EP-based Soft-Decisions Artículo en actas
En: 2014 IEEE International Symposium on Information Theory, pp. 1997–2001, IEEE, Honolulu, 2014, ISBN: 978-1-4799-5186-4.
Resumen | Enlaces | BibTeX | Etiquetas: Approximation algorithms, Approximation methods, approximation theory, Channel Coding, channel decoder, communication complexity, complexity, Complexity theory, Detectors, encoding scheme, EP soft bit probability, EP-based soft decision, error statistics, expectation propagation, expectation-maximisation algorithm, expectation-propagation algorithm, Gaussian approximation, Gaussian channels, LDPC, LDPC coded MIMO system, Low Complexity receiver, MIMO, MIMO communication, MIMO communication systems, MIMO receiver, modern communication system, multiple input multiple output, parity check codes, per-antenna soft bit probability, posterior marginalization problem, posterior probability computation, QAM constellation, Quadrature amplitude modulation, radio receivers, signaling, spectral analysis, spectral efficiency maximization, symbol detection, telecommunication signalling, Vectors
@inproceedings{Cespedes2014b,
title = {Improved Performance of LDPC-Coded MIMO Systems with EP-based Soft-Decisions},
author = {Javier Cespedes and Pablo M Olmos and Matilde Sanchez-Fernandez and Fernando Perez-Cruz},
url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6875183},
isbn = {978-1-4799-5186-4},
year = {2014},
date = {2014-01-01},
booktitle = {2014 IEEE International Symposium on Information Theory},
pages = {1997--2001},
publisher = {IEEE},
address = {Honolulu},
abstract = {Modern communications systems use efficient encoding schemes, multiple-input multiple-output (MIMO) and high-order QAM constellations for maximizing spectral efficiency. However, as the dimensions of the system grow, the design of efficient and low-complexity MIMO receivers possesses technical challenges. Symbol detection can no longer rely on conventional approaches for posterior probability computation due to complexity. Marginalization of this posterior to obtain per-antenna soft-bit probabilities to be fed to a channel decoder is computationally challenging when realistic signaling is used. In this work, we propose to use Expectation Propagation (EP) algorithm to provide an accurate low-complexity Gaussian approximation to the posterior, easily solving the posterior marginalization problem. EP soft-bit probabilities are used in an LDPC-coded MIMO system, achieving outstanding performance improvement compared to similar approaches in the literature for low-complexity LDPC MIMO decoding.},
keywords = {Approximation algorithms, Approximation methods, approximation theory, Channel Coding, channel decoder, communication complexity, complexity, Complexity theory, Detectors, encoding scheme, EP soft bit probability, EP-based soft decision, error statistics, expectation propagation, expectation-maximisation algorithm, expectation-propagation algorithm, Gaussian approximation, Gaussian channels, LDPC, LDPC coded MIMO system, Low Complexity receiver, MIMO, MIMO communication, MIMO communication systems, MIMO receiver, modern communication system, multiple input multiple output, parity check codes, per-antenna soft bit probability, posterior marginalization problem, posterior probability computation, QAM constellation, Quadrature amplitude modulation, radio receivers, signaling, spectral analysis, spectral efficiency maximization, symbol detection, telecommunication signalling, Vectors},
pubstate = {published},
tppubtype = {inproceedings}
}
Stinner, Markus; Olmos, Pablo M
Analyzing Finite-length Protograph-Based Spatially Coupled LDPC Codes Artículo en actas
En: 2014 IEEE International Symposium on Information Theory, pp. 891–895, IEEE, Honolulu, 2014, ISBN: 978-1-4799-5186-4.
Resumen | Enlaces | BibTeX | Etiquetas: binary erasure channel, covariance analysis, covariance evolution, Decoding, degree-one check nodes, Error analysis, finite-length protograph, mean evolution, Monte Carlo methods, parity check codes, peeling decoding, protograph-based SC-LDPC codes, spatially coupled low-density parity-check codes, stable decoding phase, Steady-state, Vectors
@inproceedings{Stinner2014,
title = {Analyzing Finite-length Protograph-Based Spatially Coupled LDPC Codes},
author = {Markus Stinner and Pablo M Olmos},
url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6874961},
isbn = {978-1-4799-5186-4},
year = {2014},
date = {2014-01-01},
booktitle = {2014 IEEE International Symposium on Information Theory},
pages = {891--895},
publisher = {IEEE},
address = {Honolulu},
abstract = {The peeling decoding for spatially coupled low-density parity-check (SC-LDPC) codes is analyzed for a binary erasure channel. An analytical calculation of the mean evolution of degree-one check nodes of protograph-based SC-LDPC codes is given and an estimate for the covariance evolution of degree-one check nodes is proposed in the stable decoding phase where the decoding wave propagates along the chain of coupled codes. Both results are verified numerically. Protograph-based SC-LDPC codes turn out to have a more robust behavior than unstructured random SC-LDPC codes. Using the analytically calculated parameters, the finite-length scaling laws for these constructions are given and verified by numerical simulations.},
keywords = {binary erasure channel, covariance analysis, covariance evolution, Decoding, degree-one check nodes, Error analysis, finite-length protograph, mean evolution, Monte Carlo methods, parity check codes, peeling decoding, protograph-based SC-LDPC codes, spatially coupled low-density parity-check codes, stable decoding phase, Steady-state, Vectors},
pubstate = {published},
tppubtype = {inproceedings}
}
2013
Luengo, David; Via, Javier; Monzon, Sandra; Trigano, Tom; Artés-Rodríguez, Antonio
Cross-Products LASSO Artículo en actas
En: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6118–6122, IEEE, Vancouver, 2013, ISSN: 1520-6149.
Resumen | Enlaces | BibTeX | Etiquetas: Approximation methods, approximation theory, concave programming, convex programming, Cost function, cross-product LASSO cost function, Dictionaries, dictionary, Encoding, LASSO, learning (artificial intelligence), negative co-occurrence, negative cooccurrence phenomenon, nonconvex optimization problem, Signal processing, signal processing application, signal reconstruction, sparse coding, sparse learning approach, Sparse matrices, sparsity-aware learning, successive convex approximation, Vectors
@inproceedings{Luengo2013,
title = {Cross-Products LASSO},
author = {David Luengo and Javier Via and Sandra Monzon and Tom Trigano and Antonio Art\'{e}s-Rodr\'{i}guez},
url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6638840},
issn = {1520-6149},
year = {2013},
date = {2013-01-01},
booktitle = {2013 IEEE International Conference on Acoustics, Speech and Signal Processing},
pages = {6118--6122},
publisher = {IEEE},
address = {Vancouver},
abstract = {Negative co-occurrence is a common phenomenon in many signal processing applications. In some cases the signals involved are sparse, and this information can be exploited to recover them. In this paper, we present a sparse learning approach that explicitly takes into account negative co-occurrence. This is achieved by adding a novel penalty term to the LASSO cost function based on the cross-products between the reconstruction coefficients. Although the resulting optimization problem is non-convex, we develop a new and efficient method for solving it based on successive convex approximations. Results on synthetic data, for both complete and overcomplete dictionaries, are provided to validate the proposed approach.},
keywords = {Approximation methods, approximation theory, concave programming, convex programming, Cost function, cross-product LASSO cost function, Dictionaries, dictionary, Encoding, LASSO, learning (artificial intelligence), negative co-occurrence, negative cooccurrence phenomenon, nonconvex optimization problem, Signal processing, signal processing application, signal reconstruction, sparse coding, sparse learning approach, Sparse matrices, sparsity-aware learning, successive convex approximation, Vectors},
pubstate = {published},
tppubtype = {inproceedings}
}
2012
Florentino-Liaño, Blanca; O'Mahony, Niamh; Artés-Rodríguez, Antonio
Long Term Human Activity Recognition with Automatic Orientation Estimation Artículo en actas
En: 2012 IEEE International Workshop on Machine Learning for Signal Processing, pp. 1–6, IEEE, Santander, 2012, ISSN: 1551-2541.
Resumen | Enlaces | BibTeX | Etiquetas: Acceleration, Activity recognition, automatic orientation estimation, biomedical equipment, Estimation, Gravity, Hidden Markov models, human daily activity recognition, Humans, Legged locomotion, long term human activity recognition, medical signal processing, object recognition, orientation estimation, sensors, single miniature inertial sensor, time intervals, Vectors, virtual sensor orientation, wearable sensors
@inproceedings{Florentino-Liano2012b,
title = {Long Term Human Activity Recognition with Automatic Orientation Estimation},
author = {Blanca Florentino-Lia\~{n}o and Niamh O'Mahony and Antonio Art\'{e}s-Rodr\'{i}guez},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6349789},
issn = {1551-2541},
year = {2012},
date = {2012-01-01},
booktitle = {2012 IEEE International Workshop on Machine Learning for Signal Processing},
pages = {1--6},
publisher = {IEEE},
address = {Santander},
abstract = {This work deals with the elimination of sensitivity to sensor orientation in the task of human daily activity recognition using a single miniature inertial sensor. The proposed method detects time intervals of walking, automatically estimating the orientation in these intervals and transforming the observed signals to a “virtual” sensor orientation. Classification results show that excellent performance, in terms of both precision and recall (up to 100%), is achieved, for long-term recordings in real-life settings.},
keywords = {Acceleration, Activity recognition, automatic orientation estimation, biomedical equipment, Estimation, Gravity, Hidden Markov models, human daily activity recognition, Humans, Legged locomotion, long term human activity recognition, medical signal processing, object recognition, orientation estimation, sensors, single miniature inertial sensor, time intervals, Vectors, virtual sensor orientation, wearable sensors},
pubstate = {published},
tppubtype = {inproceedings}
}
2011
Ruiz, Francisco J R; Perez-Cruz, Fernando
Zero-Error Codes for the Noisy-Typewriter Channel Artículo en actas
En: 2011 IEEE Information Theory Workshop, pp. 495–497, IEEE, Paraty, 2011, ISBN: 978-1-4577-0437-6.
Resumen | Enlaces | BibTeX | Etiquetas: channel capacity, Channel Coding, Equations, Linear code, Noise measurement, noisy-typewriter channel, nontrivial codes, nonzero zero-error rate, odd-letter noisy-typewriter channels, Upper bound, Vectors, zero-error capacity, zero-error codes
@inproceedings{Ruiz2011,
title = {Zero-Error Codes for the Noisy-Typewriter Channel},
author = {Francisco J R Ruiz and Fernando Perez-Cruz},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6089510},
isbn = {978-1-4577-0437-6},
year = {2011},
date = {2011-01-01},
booktitle = {2011 IEEE Information Theory Workshop},
pages = {495--497},
publisher = {IEEE},
address = {Paraty},
abstract = {In this paper, we propose nontrivial codes that achieve a non-zero zero-error rate for several odd-letter noisy-typewriter channels. Some of these codes (specifically, those which are defined for a number of letters of the channel of the form 2n + 1) achieve the best-known lower bound on the zero-error capacity. We build the codes using linear codes over rings, as we do not require the multiplicative inverse to build the codes.},
keywords = {channel capacity, Channel Coding, Equations, Linear code, Noise measurement, noisy-typewriter channel, nontrivial codes, nonzero zero-error rate, odd-letter noisy-typewriter channels, Upper bound, Vectors, zero-error capacity, zero-error codes},
pubstate = {published},
tppubtype = {inproceedings}
}
Achutegui, Katrin; Miguez, Joaquin
A Parallel Resampling Scheme and its Application to Distributed Particle Filtering in Wireless Networks Artículo en actas
En: 2011 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 81–84, IEEE, San Juan, 2011, ISBN: 978-1-4577-2105-2.
Resumen | Enlaces | BibTeX | Etiquetas: Approximation algorithms, Approximation methods, Artificial neural networks, distributed resampling, DRNA technique, Markov processes, nonproportional allocation algorithm, parallel resampling scheme, PF, quantization, Signal processing, Vectors, Wireless sensor network, Wireless Sensor Networks, WSN
@inproceedings{Achutegui2011,
title = {A Parallel Resampling Scheme and its Application to Distributed Particle Filtering in Wireless Networks},
author = {Katrin Achutegui and Joaquin Miguez},
url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6136051},
isbn = {978-1-4577-2105-2},
year = {2011},
date = {2011-01-01},
booktitle = {2011 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)},
pages = {81--84},
publisher = {IEEE},
address = {San Juan},
abstract = {We address the design of a particle filter (PF) that can be implemented in a distributed manner over a network of wireless sensor nodes, each of them collecting their own local data. This is a problem that has received considerable attention lately and several methods based on consensus, the transmission of likelihood information, the truncation and/or the quantization of data have been proposed. However, all existing schemes suffer from limitations related either to the amount of required communications among the nodes or the accuracy of the filter outputs. In this work we propose a novel distributed PF that is built around the distributed resampling with non-proportional allocation (DRNA) algorithm. This scheme guarantees the properness of the particle approximations produced by the filter and has been shown to be both efficient and accurate when compared with centralized PFs. The standard DRNA technique, however, places stringent demands on the communications among nodes that turn out impractical for a typical wireless sensor network (WSN). In this paper we investigate how to reduce this communication load by using (i) a random model for the spread of data over the WSN and (ii) methods that enable the out-of-sequence processing of sensor observations. A simple numerical illustration of the performance of the new algorithm compared with a centralized PF is provided.},
keywords = {Approximation algorithms, Approximation methods, Artificial neural networks, distributed resampling, DRNA technique, Markov processes, nonproportional allocation algorithm, parallel resampling scheme, PF, quantization, Signal processing, Vectors, Wireless sensor network, Wireless Sensor Networks, WSN},
pubstate = {published},
tppubtype = {inproceedings}
}
Asyhari, Taufiq A; Koch, Tobias; i Fabregas, Albert Guillen
Nearest Neighbour Decoding with Pilot-Assisted Channel Estimation for Fading Multiple-Access Channels Artículo en actas
En: 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1686–1693, IEEE, Allerton, 2011, ISBN: 978-1-4577-1818-2.
Resumen | Enlaces | BibTeX | Etiquetas: Channel estimation, Decoding, Fading, fading channels, fading multiple-access channels, MIMO, MIMO communication, multi-access systems, multiple-input multiple-output channel, nearest-neighbour decoding, noncoherent MIMO fading MAC channel, pilot-assisted channel estimation, Receiving antennas, Signal to noise ratio, signal-to-noise ratio, Time division multiple access, Vectors
@inproceedings{Asyhari2011a,
title = {Nearest Neighbour Decoding with Pilot-Assisted Channel Estimation for Fading Multiple-Access Channels},
author = {Taufiq A Asyhari and Tobias Koch and Albert Guillen i Fabregas},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6120371},
isbn = {978-1-4577-1818-2},
year = {2011},
date = {2011-01-01},
booktitle = {2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton)},
pages = {1686--1693},
publisher = {IEEE},
address = {Allerton},
abstract = {This paper studies a noncoherent multiple-input multiple-output (MIMO) fading multiple-access channel (MAC). The rate region that is achievable with nearest neighbour decoding and pilot-assisted channel estimation is analysed and the corresponding pre-log region, defined as the limiting ratio of the rate region to the logarithm of the signal-to-noise ratio (SNR) as the SNR tends to infinity, is determined.},
keywords = {Channel estimation, Decoding, Fading, fading channels, fading multiple-access channels, MIMO, MIMO communication, multi-access systems, multiple-input multiple-output channel, nearest-neighbour decoding, noncoherent MIMO fading MAC channel, pilot-assisted channel estimation, Receiving antennas, Signal to noise ratio, signal-to-noise ratio, Time division multiple access, Vectors},
pubstate = {published},
tppubtype = {inproceedings}
}