2016
Nazábal, Alfredo; Garcia-Moreno, Pablo; Artés-Rodríguez, Antonio; Ghahramani, Zoubin
Human Activity Recognition by Combining a Small Number of Classifiers. Artículo de revista
En: IEEE journal of biomedical and health informatics, vol. 20, no 5, pp. 1342 – 1351, 2016, ISSN: 2168-2208.
Resumen | Enlaces | BibTeX | Etiquetas: Bayes methods, Bayesian inference, Biological system modeling, Classifier combination, Databases, Estimation, Hidden Markov models, Journal, Sensor systems
@article{Nazabal2016b,
title = {Human Activity Recognition by Combining a Small Number of Classifiers.},
author = {Alfredo Naz\'{a}bal and Pablo Garcia-Moreno and Antonio Art\'{e}s-Rodr\'{i}guez and Zoubin Ghahramani},
url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=7161292},
doi = {10.1109/JBHI.2015.2458274},
issn = {2168-2208},
year = {2016},
date = {2016-09-01},
journal = {IEEE journal of biomedical and health informatics},
volume = {20},
number = {5},
pages = {1342 -- 1351},
publisher = {IEEE},
abstract = {We consider the problem of daily Human Activity Recognition (HAR) using multiple wireless inertial sensors and, specifically, HAR systems with a very low number of sensors, each one providing an estimation of the performed activities. We propose new Bayesian models to combine the output of the sensors. The models are based on a soft outputs combination of individual classifiers to deal with the small number of sensors. We also incorporate the dynamic nature of human activities as a first order homogeneous Markov chain. We develop both inductive and transductive inference methods for each model to be employed in supervised and semi-supervised situations, respectively. Using different real HAR databases, we compare our classifiers combination models against a single classifier that employs all the signals from the sensors. Our models exhibit consistently a reduction of the error rate and an increase of robustness against sensor failures. Our models also outperform other classifiers combination models that do not consider soft outputs and a Markovian structure of the human activities.},
keywords = {Bayes methods, Bayesian inference, Biological system modeling, Classifier combination, Databases, Estimation, Hidden Markov models, Journal, Sensor systems},
pubstate = {published},
tppubtype = {article}
}
2015
Garcia-Moreno, Pablo; Teh, Yee Whye; Perez-Cruz, Fernando; Artés-Rodríguez, Antonio
Bayesian Nonparametric Crowdsourcing Artículo de revista
En: Journal of Machine Learning Research, vol. 16, no August, pp. 1607–1627, 2015.
Resumen | Enlaces | BibTeX | Etiquetas: Bayesian nonparametrics, Dirichlet process, Gibbs sampling, Hierarchical clustering, Journal, Multiple annotators
@article{Moreno2015b,
title = {Bayesian Nonparametric Crowdsourcing},
author = {Pablo Garcia-Moreno and Yee Whye Teh and Fernando Perez-Cruz and Antonio Art\'{e}s-Rodr\'{i}guez},
url = {http://www.jmlr.org/papers/volume16/moreno15a/moreno15a.pdf},
year = {2015},
date = {2015-08-01},
journal = {Journal of Machine Learning Research},
volume = {16},
number = {August},
pages = {1607--1627},
abstract = {Crowdsourcing has been proven to be an effective and efficient tool to annotate large datasets. User annotations are often noisy, so methods to combine the annotations to produce reliable estimates of the ground truth are necessary. We claim that considering the existence of clusters of users in this combination step can improve the performance. This is especially important in early stages of crowdsourcing implementations, where the number of annotations is low. At this stage there is not enough information to accurately estimate the bias introduced by each annotator separately, so we have to resort to models that consider the statistical links among them. In addition, finding these clusters is interesting in itself as knowing the behavior of the pool of annotators allows implementing efficient active learning strategies. Based on this, we propose in this paper two new fully unsupervised models based on a Chinese Restaurant Process (CRP) prior and a hierarchical structure that allows inferring these groups jointly with the ground truth and the properties of the users. Efficient inference algorithms based on Gibbs sampling with auxiliary variables are proposed. Finally, we perform experiments, both on synthetic and real databases, to show the advantages of our models over state-of-the-art algorithms.},
keywords = {Bayesian nonparametrics, Dirichlet process, Gibbs sampling, Hierarchical clustering, Journal, Multiple annotators},
pubstate = {published},
tppubtype = {article}
}