2016
Nazábal, Alfredo; Garcia-Moreno, Pablo; Artés-Rodríguez, Antonio; Ghahramani, Zoubin
Human Activity Recognition by Combining a Small Number of Classifiers. Artículo de revista
En: IEEE journal of biomedical and health informatics, vol. 20, no 5, pp. 1342 – 1351, 2016, ISSN: 2168-2208.
Resumen | Enlaces | BibTeX | Etiquetas: Bayes methods, Bayesian inference, Biological system modeling, Classifier combination, Databases, Estimation, Hidden Markov models, Journal, Sensor systems
@article{Nazabal2016b,
title = {Human Activity Recognition by Combining a Small Number of Classifiers.},
author = {Alfredo Naz\'{a}bal and Pablo Garcia-Moreno and Antonio Art\'{e}s-Rodr\'{i}guez and Zoubin Ghahramani},
url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=7161292},
doi = {10.1109/JBHI.2015.2458274},
issn = {2168-2208},
year = {2016},
date = {2016-09-01},
journal = {IEEE journal of biomedical and health informatics},
volume = {20},
number = {5},
pages = {1342 -- 1351},
publisher = {IEEE},
abstract = {We consider the problem of daily Human Activity Recognition (HAR) using multiple wireless inertial sensors and, specifically, HAR systems with a very low number of sensors, each one providing an estimation of the performed activities. We propose new Bayesian models to combine the output of the sensors. The models are based on a soft outputs combination of individual classifiers to deal with the small number of sensors. We also incorporate the dynamic nature of human activities as a first order homogeneous Markov chain. We develop both inductive and transductive inference methods for each model to be employed in supervised and semi-supervised situations, respectively. Using different real HAR databases, we compare our classifiers combination models against a single classifier that employs all the signals from the sensors. Our models exhibit consistently a reduction of the error rate and an increase of robustness against sensor failures. Our models also outperform other classifiers combination models that do not consider soft outputs and a Markovian structure of the human activities.},
keywords = {Bayes methods, Bayesian inference, Biological system modeling, Classifier combination, Databases, Estimation, Hidden Markov models, Journal, Sensor systems},
pubstate = {published},
tppubtype = {article}
}
Nazabal, Alfredo; Garcia-Moreno, Pablo; Artes-Rodriguez, Antonio; Ghahramani, Zoubin
Human Activity Recognition by Combining a Small Number of Classifiers Artículo de revista
En: IEEE journal of biomedical and health informatics, vol. To appear, 2016, ISSN: 2168-2208.
Resumen | Enlaces | BibTeX | Etiquetas: Bayes methods, Bayesian inference, Biological system modeling, Classifier combination, Databases, Estimation, Hidden Markov models, Sensor systems
@article{Nazabal2016bb,
title = {Human Activity Recognition by Combining a Small Number of Classifiers},
author = {Alfredo Nazabal and Pablo Garcia-Moreno and Antonio Artes-Rodriguez and Zoubin Ghahramani},
url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=7161292},
doi = {10.1109/JBHI.2015.2458274},
issn = {2168-2208},
year = {2016},
date = {2016-01-01},
journal = {IEEE journal of biomedical and health informatics},
volume = {To appear},
publisher = {IEEE},
abstract = {We consider the problem of daily Human Activity Recognition (HAR) using multiple wireless inertial sensors and, specifically, HAR systems with a very low number of sensors, each one providing an estimation of the performed activities. We propose new Bayesian models to combine the output of the sensors. The models are based on a soft outputs combination of individual classifiers to deal with the small number of sensors. We also incorporate the dynamic nature of human activities as a first order homogeneous Markov chain. We develop both inductive and transductive inference methods for each model to be employed in supervised and semi-supervised situations, respectively. Using different real HAR databases, we compare our classifiers combination models against a single classifier that employs all the signals from the sensors. Our models exhibit consistently a reduction of the error rate and an increase of robustness against sensor failures. Our models also outperform other classifiers combination models that do not consider soft outputs and a Markovian structure of the human activities.},
keywords = {Bayes methods, Bayesian inference, Biological system modeling, Classifier combination, Databases, Estimation, Hidden Markov models, Sensor systems},
pubstate = {published},
tppubtype = {article}
}
2012
Leiva-Murillo, Jose M; Artés-Rodríguez, Antonio
Information-Theoretic Linear Feature Extraction Based on Kernel Density Estimators: A Review Artículo de revista
En: IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no 6, pp. 1180–1189, 2012, ISSN: 1094-6977.
Resumen | Enlaces | BibTeX | Etiquetas: Bandwidth, Density, detection theory, Entropy, Estimation, Feature extraction, Feature extraction (FE), information theoretic linear feature extraction, information theory, information-theoretic learning (ITL), Kernel, Kernel density estimation, kernel density estimators, Machine learning
@article{Leiva-Murillo2012a,
title = {Information-Theoretic Linear Feature Extraction Based on Kernel Density Estimators: A Review},
author = {Jose M Leiva-Murillo and Antonio Art\'{e}s-Rodr\'{i}guez},
url = {http://www.tsc.uc3m.es/~antonio/papers/P44_2012_Information Theoretic Linear Feature Extraction Based on Kernel Density Estimators A Review.pdf http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6185689},
issn = {1094-6977},
year = {2012},
date = {2012-01-01},
journal = {IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)},
volume = {42},
number = {6},
pages = {1180--1189},
abstract = {In this paper, we provide a unified study of the application of kernel density estimators to supervised linear feature extraction by means of criteria inspired by information and detection theory. We enrich this study by the incorporation of two novel criteria to the study, i.e., the mutual information and the likelihood ratio test, and perform both a theoretical and an experimental comparison between the new methods and other ones previously described in the literature. The impact of the bandwidth selection of the density estimator in the classification performance is discussed. Some theoretical results that bound classification performance as a function or mutual information are also compiled. A set of experiments on different real-world datasets allows us to perform an empirical comparison of the methods, in terms of both accuracy and computational complexity. We show the suitability of these methods to determine the dimension of the subspace that contains the discriminative information.},
keywords = {Bandwidth, Density, detection theory, Entropy, Estimation, Feature extraction, Feature extraction (FE), information theoretic linear feature extraction, information theory, information-theoretic learning (ITL), Kernel, Kernel density estimation, kernel density estimators, Machine learning},
pubstate = {published},
tppubtype = {article}
}