Conference Publications

Show all

2015

Luengo, David; Martino, Luca; Elvira, Victor; Bugallo, Monica F

Bias correction for distributed Bayesian estimators Inproceedings

In: 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp. 253–256, IEEE, Cancun, 2015, ISBN: 978-1-4799-1963-5.

Abstract | Links | BibTeX | Tags: Bayes methods, Big data, Distributed databases, Estimation, Probability density function, Wireless Sensor Networks

Martino, Luca; Elvira, Victor; Luengo, David; Corander, Jukka

Parallel interacting Markov adaptive importance sampling Inproceedings

In: 2015 23rd European Signal Processing Conference (EUSIPCO), pp. 499–503, IEEE, Nice, 2015, ISBN: 978-0-9928-6263-3.

Abstract | Links | BibTeX | Tags: Adaptive importance sampling, Bayesian inference, MCMC methods, Monte Carlo methods, Parallel Chains, Probability density function, Proposals, Signal processing, Signal processing algorithms, Sociology

Martino, Luca; Elvira, Victor; Luengo, David; Artés-Rodríguez, Antonio; Corander, Jukka

Smelly Parallel MCMC Chains Inproceedings

In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4070–4074, IEEE, Brisbane, 2015, ISBN: 978-1-4673-6997-8.

Abstract | Links | BibTeX | Tags: Bayesian inference, learning (artificial intelligence), Machine learning, Markov chain Monte Carlo, Markov chain Monte Carlo algorithms, Markov processes, MC methods, MCMC algorithms, MCMC scheme, mean square error, mean square error methods, Monte Carlo methods, optimisation, parallel and interacting chains, Probability density function, Proposals, robustness, Sampling methods, Signal processing, Signal processing algorithms, signal sampling, smelly parallel chains, smelly parallel MCMC chains, Stochastic optimization

2013

Koblents, Eugenia; Miguez, Joaquin

A Population Monte Carlo Scheme for Computational Inference in High Dimensional Spaces Inproceedings

In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6318–6322, IEEE, Vancouver, 2013, ISSN: 1520-6149.

Abstract | Links | BibTeX | Tags: Approximation methods, computational inference, degeneracy of importance weights, high dimensional spaces, Importance sampling, importance weights, iterative importance sampling, iterative methods, mixture-PMC, mixture-PMC algorithm, Monte Carlo methods, MPMC, nonlinear transformations, population Monte Carlo, population Monte Carlo scheme, Probability density function, probability distributions, Proposals, Sociology, Standards

2011

Balasingam, Balakumar; Bolic, Miodrag; Djuric, Petar M; Miguez, Joaquin

Efficient Distributed Resampling for Particle Filters Inproceedings

In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3772–3775, IEEE, Prague, 2011, ISSN: 1520-6149.

Abstract | Links | BibTeX | Tags: Approximation algorithms, Copper, Covariance matrix, distributed resampling, Markov processes, Probability density function, Sequential Monte-Carlo methods, Signal processing, Signal processing algorithms

Plata-Chaves, Jorge; Lazaro, Marcelino; Artés-Rodríguez, Antonio

Optimal Neyman-Pearson Fusion in Two-Dimensional Densor Networks with Serial Architecture and Dependent Observations Inproceedings

In: Information Fusion (FUSION), 2011 Proceedings of the 14th International Conference on, pp. 1–6, Chicago, 2011, ISBN: 978-1-4577-0267-9.

Abstract | Links | BibTeX | Tags: Bayesian methods, binary distributed detection problem, decision theory, dependent observations, Joints, local decision rule, Measurement uncertainty, Network topology, Neyman-Pearson criterion, optimal Neyman-Pearson fusion, optimum distributed detection, Parallel architectures, Performance evaluation, Probability density function, sensor dependent observations, sensor fusion, serial architecture, serial network topology, two-dimensional sensor networks, Wireless Sensor Networks

2009

Martino, Luca; Miguez, Joaquin

A Novel Rejection Sampling Scheme for Posterior Probability Distributions Inproceedings

In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2921–2924, IEEE, Taipei, 2009, ISSN: 1520-6149.

Abstract | Links | BibTeX | Tags: Additive noise, arbitrary target probability distributions, Bayes methods, Bayesian methods, Monte Carlo integration, Monte Carlo methods, Monte Carlo techniques, Overbounding, posterior probability distributions, Probability density function, Probability distribution, Proposals, Rejection sampling, rejection sampling scheme, Sampling methods, Signal processing algorithms, signal sampling, Upper bound

Martino, Luca; Miguez, Joaquin

An Adaptive Accept/Reject Sampling Algorithm for Posterior Probability Distributions Inproceedings

In: 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, pp. 45–48, IEEE, Cardiff, 2009, ISBN: 978-1-4244-2709-3.

Abstract | Links | BibTeX | Tags: adaptive accept/reject sampling, Adaptive rejection sampling, arbitrary target probability distributions, Computer Simulation, Filtering, Monte Carlo integration, Monte Carlo methods, posterior probability distributions, Probability, Probability density function, Probability distribution, Proposals, Rejection sampling, Sampling methods, sensor networks, Signal processing algorithms, signal sampling, Testing