### 2011

Plata-Chaves, Jorge; Lazaro, Marcelino; Artés-Rodríguez, Antonio

Optimal Neyman-Pearson Fusion in Two-Dimensional Densor Networks with Serial Architecture and Dependent Observations Proceedings Article

En: Information Fusion (FUSION), 2011 Proceedings of the 14th International Conference on, pp. 1–6, Chicago, 2011, ISBN: 978-1-4577-0267-9.

Resumen | Enlaces | BibTeX | Etiquetas: Bayesian methods, binary distributed detection problem, decision theory, dependent observations, Joints, local decision rule, Measurement uncertainty, Network topology, Neyman-Pearson criterion, optimal Neyman-Pearson fusion, optimum distributed detection, Parallel architectures, Performance evaluation, Probability density function, sensor dependent observations, sensor fusion, serial architecture, serial network topology, two-dimensional sensor networks, Wireless Sensor Networks

@inproceedings{Plata-Chaves2011bb,

title = {Optimal Neyman-Pearson Fusion in Two-Dimensional Densor Networks with Serial Architecture and Dependent Observations},

author = {Jorge Plata-Chaves and Marcelino Lazaro and Antonio Art\'{e}s-Rodr\'{i}guez},

url = {http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5977545\&searchWithin%3Dartes+rodriguez%26sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A5977431%29},

isbn = {978-1-4577-0267-9},

year = {2011},

date = {2011-01-01},

booktitle = {Information Fusion (FUSION), 2011 Proceedings of the 14th International Conference on},

pages = {1--6},

address = {Chicago},

abstract = {In this correspondence, we consider a sensor network with serial architecture. When solving a binary distributed detection problem where the sensor observations are dependent under each one of the two possible hypothesis, each fusion stage of the network applies a local decision rule. We assume that, based on the information available at each fusion stage, the decision rules provide a binary message regarding the presence or absence of an event of interest. Under this scenario and under a Neyman-Pearson formulation, we derive the optimal decision rules associated with each fusion stage. As it happens when the sensor observations are independent, we are able to show that, under the Neyman-Pearson criterion, the optimal fusion rules of a serial configuration with dependent observations also match optimal Neyman-Pearson tests.},

keywords = {Bayesian methods, binary distributed detection problem, decision theory, dependent observations, Joints, local decision rule, Measurement uncertainty, Network topology, Neyman-Pearson criterion, optimal Neyman-Pearson fusion, optimum distributed detection, Parallel architectures, Performance evaluation, Probability density function, sensor dependent observations, sensor fusion, serial architecture, serial network topology, two-dimensional sensor networks, Wireless Sensor Networks},

pubstate = {published},

tppubtype = {inproceedings}

}