### 2015

Vazquez-Vilar, Gonzalo; Martinez, Alfonso; i Fabregas, Albert Guillen

A derivation of the Cost-Constrained Sphere-Packing Exponent Inproceedings

In: 2015 IEEE International Symposium on Information Theory (ISIT), pp. 929–933, IEEE, Hong Kong, 2015, ISBN: 978-1-4673-7704-1.

Links | BibTeX | Tags: Channel Coding, channel-coding cost-constrained sphere-packing exp, continuous channel, continuous memoryless channel, cost constraint, error probability, hypothesis testing, Lead, Memoryless systems, Optimization, per-codeword cost constraint, reliability function, spherepacking exponent, Testing

@inproceedings{Vazquez-Vilar2015,

title = {A derivation of the Cost-Constrained Sphere-Packing Exponent},

author = {Gonzalo Vazquez-Vilar and Alfonso Martinez and Albert Guillen i Fabregas},

url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=7282591},

doi = {10.1109/ISIT.2015.7282591},

isbn = {978-1-4673-7704-1},

year = {2015},

date = {2015-06-01},

booktitle = {2015 IEEE International Symposium on Information Theory (ISIT)},

pages = {929--933},

publisher = {IEEE},

address = {Hong Kong},

keywords = {Channel Coding, channel-coding cost-constrained sphere-packing exp, continuous channel, continuous memoryless channel, cost constraint, error probability, hypothesis testing, Lead, Memoryless systems, Optimization, per-codeword cost constraint, reliability function, spherepacking exponent, Testing},

pubstate = {published},

tppubtype = {inproceedings}

}

### 2014

Ostman, Johan; Yang, Wei; Durisi, Giuseppe; Koch, Tobias

Diversity Versus Multiplexing at Finite Blocklength Inproceedings

In: 2014 11th International Symposium on Wireless Communications Systems (ISWCS), pp. 702–706, IEEE, Barcelona, 2014, ISBN: 978-1-4799-5863-4.

Abstract | Links | BibTeX | Tags: Antennas, Channel Coding, channel selectivity, Coherence, delay-sensitive ultra-reliable communication links, diversity reception, diversity-exploiting schemes, diversity-multiplexing tradeoff, Fading, finite blocklength analysis, maximum channel coding rate, multiple-antenna block-memoryless Rayleigh-fading, Multiplexing, nonasymptotic bounds, packet size, radio links, Rayleigh channels, Time-frequency analysis, Transmitters, Upper bound

@inproceedings{Ostman2014,

title = {Diversity Versus Multiplexing at Finite Blocklength},

author = {Johan Ostman and Wei Yang and Giuseppe Durisi and Tobias Koch},

url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6933444},

isbn = {978-1-4799-5863-4},

year = {2014},

date = {2014-01-01},

booktitle = {2014 11th International Symposium on Wireless Communications Systems (ISWCS)},

pages = {702--706},

publisher = {IEEE},

address = {Barcelona},

abstract = {A finite blocklenth analysis of the diversity-multiplexing tradeoff is presented, based on nonasymptotic bounds on the maximum channel coding rate of multiple-antenna block-memoryless Rayleigh-fading channels. The bounds in this paper allow one to numerically assess for which packet size, number of antennas, and degree of channel selectivity, diversity-exploiting schemes are close to optimal, and when instead the available spatial degrees of freedom should be used to provide spatial multiplexing. This finite blocklength view on the diversity-multiplexing tradeoff provides insights on the design of delay-sensitive ultra-reliable communication links.},

keywords = {Antennas, Channel Coding, channel selectivity, Coherence, delay-sensitive ultra-reliable communication links, diversity reception, diversity-exploiting schemes, diversity-multiplexing tradeoff, Fading, finite blocklength analysis, maximum channel coding rate, multiple-antenna block-memoryless Rayleigh-fading, Multiplexing, nonasymptotic bounds, packet size, radio links, Rayleigh channels, Time-frequency analysis, Transmitters, Upper bound},

pubstate = {published},

tppubtype = {inproceedings}

}

Cespedes, Javier; Olmos, Pablo M; Sanchez-Fernandez, Matilde; Perez-Cruz, Fernando

Improved Performance of LDPC-Coded MIMO Systems with EP-based Soft-Decisions Inproceedings

In: 2014 IEEE International Symposium on Information Theory, pp. 1997–2001, IEEE, Honolulu, 2014, ISBN: 978-1-4799-5186-4.

Abstract | Links | BibTeX | Tags: Approximation algorithms, Approximation methods, approximation theory, Channel Coding, channel decoder, communication complexity, complexity, Complexity theory, Detectors, encoding scheme, EP soft bit probability, EP-based soft decision, error statistics, expectation propagation, expectation-maximisation algorithm, expectation-propagation algorithm, Gaussian approximation, Gaussian channels, LDPC, LDPC coded MIMO system, Low Complexity receiver, MIMO, MIMO communication, MIMO communication systems, MIMO receiver, modern communication system, multiple input multiple output, parity check codes, per-antenna soft bit probability, posterior marginalization problem, posterior probability computation, QAM constellation, Quadrature amplitude modulation, radio receivers, signaling, spectral analysis, spectral efficiency maximization, symbol detection, telecommunication signalling, Vectors

@inproceedings{Cespedes2014b,

title = {Improved Performance of LDPC-Coded MIMO Systems with EP-based Soft-Decisions},

author = {Javier Cespedes and Pablo M Olmos and Matilde Sanchez-Fernandez and Fernando Perez-Cruz},

url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6875183},

isbn = {978-1-4799-5186-4},

year = {2014},

date = {2014-01-01},

booktitle = {2014 IEEE International Symposium on Information Theory},

pages = {1997--2001},

publisher = {IEEE},

address = {Honolulu},

abstract = {Modern communications systems use efficient encoding schemes, multiple-input multiple-output (MIMO) and high-order QAM constellations for maximizing spectral efficiency. However, as the dimensions of the system grow, the design of efficient and low-complexity MIMO receivers possesses technical challenges. Symbol detection can no longer rely on conventional approaches for posterior probability computation due to complexity. Marginalization of this posterior to obtain per-antenna soft-bit probabilities to be fed to a channel decoder is computationally challenging when realistic signaling is used. In this work, we propose to use Expectation Propagation (EP) algorithm to provide an accurate low-complexity Gaussian approximation to the posterior, easily solving the posterior marginalization problem. EP soft-bit probabilities are used in an LDPC-coded MIMO system, achieving outstanding performance improvement compared to similar approaches in the literature for low-complexity LDPC MIMO decoding.},

keywords = {Approximation algorithms, Approximation methods, approximation theory, Channel Coding, channel decoder, communication complexity, complexity, Complexity theory, Detectors, encoding scheme, EP soft bit probability, EP-based soft decision, error statistics, expectation propagation, expectation-maximisation algorithm, expectation-propagation algorithm, Gaussian approximation, Gaussian channels, LDPC, LDPC coded MIMO system, Low Complexity receiver, MIMO, MIMO communication, MIMO communication systems, MIMO receiver, modern communication system, multiple input multiple output, parity check codes, per-antenna soft bit probability, posterior marginalization problem, posterior probability computation, QAM constellation, Quadrature amplitude modulation, radio receivers, signaling, spectral analysis, spectral efficiency maximization, symbol detection, telecommunication signalling, Vectors},

pubstate = {published},

tppubtype = {inproceedings}

}

### 2013

Salamanca, Luis; Murillo-Fuentes, Juan Jose; Olmos, Pablo M; Perez-Cruz, Fernando

Improving the BP Estimate over the AWGN Channel Using Tree-Structured Expectation Propagation Inproceedings

In: 2013 IEEE International Symposium on Information Theory, pp. 2990–2994, IEEE, Istanbul, 2013, ISSN: 2157-8095.

Abstract | Links | BibTeX | Tags: Approximation algorithms, Approximation methods, AWGN channels, BEC, belief propagation decoding, BI-AWGN channel, binary additive white Gaussian noise channel, binary erasure channel, BP estimation, Channel Coding, Complexity theory, error rate reduction, error statistics, Expectation, finite-length codes, Iterative decoding, LDPC codes, LDPC decoding, low-density parity-check decoding, Maximum likelihood decoding, parity check codes, posterior distribution, Propagation, TEP algorithm, tree-structured expectation propagation algorithm, trees (mathematics)

@inproceedings{Salamanca2013,

title = {Improving the BP Estimate over the AWGN Channel Using Tree-Structured Expectation Propagation},

author = {Luis Salamanca and Juan Jose Murillo-Fuentes and Pablo M Olmos and Fernando Perez-Cruz},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6620774},

issn = {2157-8095},

year = {2013},

date = {2013-01-01},

booktitle = {2013 IEEE International Symposium on Information Theory},

pages = {2990--2994},

publisher = {IEEE},

address = {Istanbul},

abstract = {In this paper, we propose the tree-structured expectation propagation (TEP) algorithm for low-density parity-check (LDPC) decoding over the binary additive white Gaussian noise (BI-AWGN) channel. By approximating the posterior distribution by a tree-structure factorization, the TEP has been proven to improve belief propagation (BP) decoding over the binary erasure channel (BEC). We show for the AWGN channel how the TEP decoder is also able to capture additional information disregarded by the BP solution, which leads to a noticeable reduction of the error rate for finite-length codes. We show that for the range of codes of interest, the TEP gain is obtained with a slight increase in complexity over that of the BP algorithm. An efficient way of constructing the tree-like structure is also described.},

keywords = {Approximation algorithms, Approximation methods, AWGN channels, BEC, belief propagation decoding, BI-AWGN channel, binary additive white Gaussian noise channel, binary erasure channel, BP estimation, Channel Coding, Complexity theory, error rate reduction, error statistics, Expectation, finite-length codes, Iterative decoding, LDPC codes, LDPC decoding, low-density parity-check decoding, Maximum likelihood decoding, parity check codes, posterior distribution, Propagation, TEP algorithm, tree-structured expectation propagation algorithm, trees (mathematics)},

pubstate = {published},

tppubtype = {inproceedings}

}

### 2012

Campo, Adria Tauste; Vazquez-Vilar, Gonzalo; i Fabregas, Albert Guillen; Koch, Tobias; Martinez, Alfonso

Achieving Csiszár's Source-Channel Coding Exponent with Product Distributions Inproceedings

In: 2012 IEEE International Symposium on Information Theory Proceedings, pp. 1548–1552, IEEE, Cambridge, MA, 2012, ISSN: 2157-8095.

Abstract | Links | BibTeX | Tags: average probability of error, Channel Coding, code construction, codewords, Csiszár's source-channel coding, Decoding, Encoding, error probability, error statistics, Joints, Manganese, product distributions, random codes, random-coding upper bound, source coding, source messages, Upper bound

@inproceedings{Campo2012a,

title = {Achieving Csiszár's Source-Channel Coding Exponent with Product Distributions},

author = {Adria Tauste Campo and Gonzalo Vazquez-Vilar and Albert Guillen i Fabregas and Tobias Koch and Alfonso Martinez},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6283524},

issn = {2157-8095},

year = {2012},

date = {2012-01-01},

booktitle = {2012 IEEE International Symposium on Information Theory Proceedings},

pages = {1548--1552},

publisher = {IEEE},

address = {Cambridge, MA},

abstract = {We derive a random-coding upper bound on the average probability of error of joint source-channel coding that recovers Csiszár's error exponent when used with product distributions over the channel inputs. Our proof technique for the error probability analysis employs a code construction for which source messages are assigned to subsets and codewords are generated with a distribution that depends on the subset.},

keywords = {average probability of error, Channel Coding, code construction, codewords, Csiszár's source-channel coding, Decoding, Encoding, error probability, error statistics, Joints, Manganese, product distributions, random codes, random-coding upper bound, source coding, source messages, Upper bound},

pubstate = {published},

tppubtype = {inproceedings}

}

### 2011

Ruiz, Francisco J R; Perez-Cruz, Fernando

Zero-Error Codes for the Noisy-Typewriter Channel Inproceedings

In: 2011 IEEE Information Theory Workshop, pp. 495–497, IEEE, Paraty, 2011, ISBN: 978-1-4577-0437-6.

Abstract | Links | BibTeX | Tags: channel capacity, Channel Coding, Equations, Linear code, Noise measurement, noisy-typewriter channel, nontrivial codes, nonzero zero-error rate, odd-letter noisy-typewriter channels, Upper bound, Vectors, zero-error capacity, zero-error codes

@inproceedings{Ruiz2011,

title = {Zero-Error Codes for the Noisy-Typewriter Channel},

author = {Francisco J R Ruiz and Fernando Perez-Cruz},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6089510},

isbn = {978-1-4577-0437-6},

year = {2011},

date = {2011-01-01},

booktitle = {2011 IEEE Information Theory Workshop},

pages = {495--497},

publisher = {IEEE},

address = {Paraty},

abstract = {In this paper, we propose nontrivial codes that achieve a non-zero zero-error rate for several odd-letter noisy-typewriter channels. Some of these codes (specifically, those which are defined for a number of letters of the channel of the form 2n + 1) achieve the best-known lower bound on the zero-error capacity. We build the codes using linear codes over rings, as we do not require the multiplicative inverse to build the codes.},

keywords = {channel capacity, Channel Coding, Equations, Linear code, Noise measurement, noisy-typewriter channel, nontrivial codes, nonzero zero-error rate, odd-letter noisy-typewriter channels, Upper bound, Vectors, zero-error capacity, zero-error codes},

pubstate = {published},

tppubtype = {inproceedings}

}

Koch, Tobias; Lapidoth, Amos

Asymmetric Quantizers are Better at Low SNR Inproceedings

In: 2011 IEEE International Symposium on Information Theory Proceedings, pp. 2592–2596, IEEE, St. Petersburg, 2011, ISSN: 2157-8095.

Abstract | Links | BibTeX | Tags: asymmetric one-bit quantizer, asymmetric signal constellations, channel capacity, Channel Coding, Constellation diagram, Decoding, discrete-time average-power-limited Gaussian chann, Gaussian channels, quantization, Signal to noise ratio, signal-to-noise ratio, SNR, spread spectrum communication, spread-spectrum communications, ultra wideband communication, ultrawideband communications, Upper bound

@inproceedings{Koch2011,

title = {Asymmetric Quantizers are Better at Low SNR},

author = {Tobias Koch and Amos Lapidoth},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6034037},

issn = {2157-8095},

year = {2011},

date = {2011-01-01},

booktitle = {2011 IEEE International Symposium on Information Theory Proceedings},

pages = {2592--2596},

publisher = {IEEE},

address = {St. Petersburg},

abstract = {We study the behavior of channel capacity when a one-bit quantizer is employed at the output of the discrete-time average-power-limited Gaussian channel. We focus on the low signal-to-noise ratio regime, where communication at very low spectral efficiencies takes place, as in Spread-Spectrum and Ultra-Wideband communications. It is well known that, in this regime, a symmetric one-bit quantizer reduces capacity by 2/$pi$, which translates to a power loss of approximately two decibels. Here we show that if an asymmetric one-bit quantizer is employed, and if asymmetric signal constellations are used, then these two decibels can be recovered in full.},

keywords = {asymmetric one-bit quantizer, asymmetric signal constellations, channel capacity, Channel Coding, Constellation diagram, Decoding, discrete-time average-power-limited Gaussian chann, Gaussian channels, quantization, Signal to noise ratio, signal-to-noise ratio, SNR, spread spectrum communication, spread-spectrum communications, ultra wideband communication, ultrawideband communications, Upper bound},

pubstate = {published},

tppubtype = {inproceedings}

}

Salamanca, Luis; Olmos, Pablo M; Murillo-Fuentes, Juan Jose; Perez-Cruz, Fernando

MAP Decoding for LDPC Codes over the Binary Erasure Channel Inproceedings

In: 2011 IEEE Information Theory Workshop, pp. 145–149, IEEE, Paraty, 2011, ISBN: 978-1-4577-0437-6.

Abstract | Links | BibTeX | Tags: binary erasure channel, Channel Coding, computational complexity, Decoding, generalized peeling decoder, generalized tree-structured expectation propagatio, graphical models, Iterative decoding, LDPC codes, MAP decoding, MAP decoding algorithm, Maximum likelihood decoding, parity check codes, TEP decoder, tree graph theory, Tree graphs, tree-structured expectation propagation, trees (mathematics)

@inproceedings{Salamanca2011a,

title = {MAP Decoding for LDPC Codes over the Binary Erasure Channel},

author = {Luis Salamanca and Pablo M Olmos and Juan Jose Murillo-Fuentes and Fernando Perez-Cruz},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6089364},

isbn = {978-1-4577-0437-6},

year = {2011},

date = {2011-01-01},

booktitle = {2011 IEEE Information Theory Workshop},

pages = {145--149},

publisher = {IEEE},

address = {Paraty},

abstract = {In this paper, we propose a decoding algorithm for LDPC codes that achieves the MAP solution over the BEC. This algorithm, denoted as generalized tree-structured expectation propagation (GTEP), extends the idea of our previous work, the TEP decoder. The GTEP modifies the graph by eliminating a check node of any degree and merging this information with the remaining graph. The GTEP decoder upon completion either provides the unique MAP solution or a tree graph in which the number of parent nodes indicates the multiplicity of the MAP solution. This algorithm can be easily described for the BEC, and it can be cast as a generalized peeling decoder. The GTEP naturally optimizes the complexity of the decoder, by looking for checks nodes of minimum degree to be eliminated first.},

keywords = {binary erasure channel, Channel Coding, computational complexity, Decoding, generalized peeling decoder, generalized tree-structured expectation propagatio, graphical models, Iterative decoding, LDPC codes, MAP decoding, MAP decoding algorithm, Maximum likelihood decoding, parity check codes, TEP decoder, tree graph theory, Tree graphs, tree-structured expectation propagation, trees (mathematics)},

pubstate = {published},

tppubtype = {inproceedings}

}

### 2010

Olmos, Pablo M; Murillo-Fuentes, Juan Jose; Perez-Cruz, Fernando

Tree-Structure Expectation Propagation for Decoding LDPC Codes over Binary Erasure Channels Inproceedings

In: 2010 IEEE International Symposium on Information Theory, pp. 799–803, IEEE, Austin, TX, 2010, ISBN: 978-1-4244-7892-7.

Abstract | Links | BibTeX | Tags: belief propagation, binary erasure channels, Bipartite graph, BP decoder, Capacity planning, Channel Coding, codeword, computational complexity, Decoding, Finishing, graph theory, H infinity control, LDPC code decoding, LDPC Tanner graph, Maxwell decoder, parity check codes, Performance analysis, tree structure expectation propagation, trees (mathematics), Upper bound

@inproceedings{Olmos2010,

title = {Tree-Structure Expectation Propagation for Decoding LDPC Codes over Binary Erasure Channels},

author = {Pablo M Olmos and Juan Jose Murillo-Fuentes and Fernando Perez-Cruz},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5513636},

isbn = {978-1-4244-7892-7},

year = {2010},

date = {2010-01-01},

booktitle = {2010 IEEE International Symposium on Information Theory},

pages = {799--803},

publisher = {IEEE},

address = {Austin, TX},

abstract = {Expectation Propagation is a generalization to Belief Propagation (BP) in two ways. First, it can be used with any exponential family distribution over the cliques in the graph. Second, it can impose additional constraints on the marginal distributions. We use this second property to impose pair-wise marginal distribution constraints in some check nodes of the LDPC Tanner graph. These additional constraints allow decoding the received codeword when the BP decoder gets stuck. In this paper, we first present the new decoding algorithm, whose complexity is identical to the BP decoder, and we then prove that it is able to decode codewords with a larger fraction of erasures, as the block size tends to infinity. The proposed algorithm can be also understood as a simplification of the Maxwell decoder, but without its computational complexity. We also illustrate that the new algorithm outperforms the BP decoder for finite block-size codes.},

keywords = {belief propagation, binary erasure channels, Bipartite graph, BP decoder, Capacity planning, Channel Coding, codeword, computational complexity, Decoding, Finishing, graph theory, H infinity control, LDPC code decoding, LDPC Tanner graph, Maxwell decoder, parity check codes, Performance analysis, tree structure expectation propagation, trees (mathematics), Upper bound},

pubstate = {published},

tppubtype = {inproceedings}

}

Salamanca, Luis; Murillo-Fuentes, Juan Jose; Perez-Cruz, Fernando

Channel Decoding with a Bayesian Equalizer Inproceedings

In: 2010 IEEE International Symposium on Information Theory, pp. 1998–2002, IEEE, Austin, TX, 2010, ISBN: 978-1-4244-7892-7.

Abstract | Links | BibTeX | Tags: a posteriori probability, Bayesian equalizer, Bayesian methods, BER, Bit error rate, Channel Coding, channel decoding, channel estate information, Communication channels, Decoding, equalisers, Equalizers, error statistics, low-density parity-check decoders, LPDC decoders, Maximum likelihood decoding, maximum likelihood detection, maximum likelihood estimation, Noise reduction, parity check codes, Probability, Uncertainty

@inproceedings{Salamanca2010a,

title = {Channel Decoding with a Bayesian Equalizer},

author = {Luis Salamanca and Juan Jose Murillo-Fuentes and Fernando Perez-Cruz},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5513348},

isbn = {978-1-4244-7892-7},

year = {2010},

date = {2010-01-01},

booktitle = {2010 IEEE International Symposium on Information Theory},

pages = {1998--2002},

publisher = {IEEE},

address = {Austin, TX},

abstract = {Low-density parity-check (LPDC) decoders assume the channel estate information (CSI) is known and they have the true a posteriori probability (APP) for each transmitted bit. But in most cases of interest, the CSI needs to be estimated with the help of a short training sequence and the LDPC decoder has to decode the received word using faulty APP estimates. In this paper, we study the uncertainty in the CSI estimate and how it affects the bit error rate (BER) output by the LDPC decoder. To improve these APP estimates, we propose a Bayesian equalizer that takes into consideration not only the uncertainty due to the noise in the channel, but also the uncertainty in the CSI estimate, reducing the BER after the LDPC decoder.},

keywords = {a posteriori probability, Bayesian equalizer, Bayesian methods, BER, Bit error rate, Channel Coding, channel decoding, channel estate information, Communication channels, Decoding, equalisers, Equalizers, error statistics, low-density parity-check decoders, LPDC decoders, Maximum likelihood decoding, maximum likelihood detection, maximum likelihood estimation, Noise reduction, parity check codes, Probability, Uncertainty},

pubstate = {published},

tppubtype = {inproceedings}

}

### 2009

Perez-Cruz, Fernando; Kulkarni, S R

Distributed Least Square for Consensus Building in Sensor Networks Inproceedings

In: 2009 IEEE International Symposium on Information Theory, pp. 2877–2881, IEEE, Seoul, 2009, ISBN: 978-1-4244-4312-3.

Abstract | Links | BibTeX | Tags: Change detection algorithms, Channel Coding, Distributed computing, distributed least square method, graphical models, Inference algorithms, Kernel, Least squares methods, nonparametric statistics, Parametric statistics, robustness, sensor-network learning, statistical analysis, Telecommunication network reliability, Wireless sensor network, Wireless Sensor Networks

@inproceedings{Perez-Cruz2009,

title = {Distributed Least Square for Consensus Building in Sensor Networks},

author = {Fernando Perez-Cruz and S R Kulkarni},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5205336},

isbn = {978-1-4244-4312-3},

year = {2009},

date = {2009-01-01},

booktitle = {2009 IEEE International Symposium on Information Theory},

pages = {2877--2881},

publisher = {IEEE},

address = {Seoul},

abstract = {We present a novel mechanism for consensus building in sensor networks. The proposed algorithm has three main properties that make it suitable for general sensor-network learning. First, the proposed algorithm is based on robust nonparametric statistics and thereby needs little prior knowledge about the network and the function that needs to be estimated. Second, the algorithm uses only local information about the network and it communicates only with nearby sensors. Third, the algorithm is completely asynchronous and robust. It does not need to coordinate the sensors to estimate the underlying function and it is not affected if other sensors in the network stop working. Therefore, the proposed algorithm is an ideal candidate for sensor networks deployed in remote and inaccessible areas, which might need to change their objective once they have been set up.},

keywords = {Change detection algorithms, Channel Coding, Distributed computing, distributed least square method, graphical models, Inference algorithms, Kernel, Least squares methods, nonparametric statistics, Parametric statistics, robustness, sensor-network learning, statistical analysis, Telecommunication network reliability, Wireless sensor network, Wireless Sensor Networks},

pubstate = {published},

tppubtype = {inproceedings}

}

Fresia, Maria; Perez-Cruz, Fernando; Poor, Vincent H

Optimized Concatenated LDPC Codes for Joint Source-Channel Coding Inproceedings

In: 2009 IEEE International Symposium on Information Theory, pp. 2131–2135, IEEE, Seoul, 2009, ISBN: 978-1-4244-4312-3.

Abstract | Links | BibTeX | Tags: approximation theory, asymptotic behavior analysis, Channel Coding, combined source-channel coding, Concatenated codes, Decoding, Entropy, EXIT chart, extrinsic information transfer, H infinity control, Information analysis, joint belief propagation decoder, joint source-channel coding, low-density-parity-check code, optimized concatenated independent LDPC codes, parity check codes, Redundancy, source coding, transmitter, Transmitters

@inproceedings{Fresia2009,

title = {Optimized Concatenated LDPC Codes for Joint Source-Channel Coding},

author = {Maria Fresia and Fernando Perez-Cruz and Vincent H Poor},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5205766},

isbn = {978-1-4244-4312-3},

year = {2009},

date = {2009-01-01},

booktitle = {2009 IEEE International Symposium on Information Theory},

pages = {2131--2135},

publisher = {IEEE},

address = {Seoul},

abstract = {In this paper a scheme for joint source-channel coding based on low-density-parity-check (LDPC) codes is investigated. Two concatenated independent LDPC codes are used in the transmitter: one for source coding and the other for channel coding, with a joint belief propagation decoder. The asymptotic behavior is analyzed using EXtrinsic Information Transfer (EXIT) charts and this approximation is corroborated with illustrative experiments. The optimization of the degree distributions for our sparse code to maximize the information transmission rate is also considered.},

keywords = {approximation theory, asymptotic behavior analysis, Channel Coding, combined source-channel coding, Concatenated codes, Decoding, Entropy, EXIT chart, extrinsic information transfer, H infinity control, Information analysis, joint belief propagation decoder, joint source-channel coding, low-density-parity-check code, optimized concatenated independent LDPC codes, parity check codes, Redundancy, source coding, transmitter, Transmitters},

pubstate = {published},

tppubtype = {inproceedings}

}