### 2012

Salamanca, Luis; Murillo-Fuentes, Juan Jose; Olmos, Pablo M; Perez-Cruz, Fernando

Tree-Structured Expectation Propagation for LDPC Decoding over the AWGN Channel Artículo en actas

En: 2012 IEEE International Workshop on Machine Learning for Signal Processing, pp. 1–6, IEEE, Santander, 2012, ISSN: 1551-2541.

Resumen | Enlaces | BibTeX | Etiquetas: additive white Gaussian noise channel, Approximation algorithms, Approximation methods, approximation theory, AWGN channel, AWGN channels, belief propagation solution, Bit error rate, Decoding, error floor reduction, finite-length regime, Gain, Joints, LDPC decoding, low-density parity-check decoding, pairwise marginal constraint, parity check codes, TEP decoder, tree-like approximation, tree-structured expectation propagation, trees (mathematics)

@inproceedings{Salamanca2012,

title = {Tree-Structured Expectation Propagation for LDPC Decoding over the AWGN Channel},

author = {Luis Salamanca and Juan Jose Murillo-Fuentes and Pablo M Olmos and Fernando Perez-Cruz},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6349716},

issn = {1551-2541},

year = {2012},

date = {2012-01-01},

booktitle = {2012 IEEE International Workshop on Machine Learning for Signal Processing},

pages = {1--6},

publisher = {IEEE},

address = {Santander},

abstract = {In this paper, we propose the tree-structured expectation propagation (TEP) algorithm for low-density parity-check (LDPC) decoding over the additive white Gaussian noise (AWGN) channel. By imposing a tree-like approximation over the graphical model of the code, this algorithm introduces pairwise marginal constraints over pairs of variables, which provide joint information of the variables related. Thanks to this, the proposed TEP decoder improves the performance of the standard belief propagation (BP) solution. An efficient way of constructing the tree-like structure is also described. The simulation results illustrate the TEP decoder gain in the finite-length regime, compared to the standard BP solution. For code lengths shorter than n = 512, the gain in the waterfall region achieves up to 0.25 dB. We also notice a remarkable reduction of the error floor.},

keywords = {additive white Gaussian noise channel, Approximation algorithms, Approximation methods, approximation theory, AWGN channel, AWGN channels, belief propagation solution, Bit error rate, Decoding, error floor reduction, finite-length regime, Gain, Joints, LDPC decoding, low-density parity-check decoding, pairwise marginal constraint, parity check codes, TEP decoder, tree-like approximation, tree-structured expectation propagation, trees (mathematics)},

pubstate = {published},

tppubtype = {inproceedings}

}

Olmos, Pablo M; Perez-Cruz, Fernando; Salamanca, Luis; Murillo-Fuentes, Juan Jose

Finite-Length Performance of Spatially-Coupled LDPC Codes under TEP Decoding Artículo en actas

En: 2012 IEEE Information Theory Workshop, pp. 1–6, IEEE, Lausanne, 2012, ISBN: 978-1-4673-0223-4.

Enlaces | BibTeX | Etiquetas: asymptotic limit, belief propagation decoding, Complexity theory, convolutional codes, convolutional LDPC codes, Decoding, decoding latency, decoding threshold, erasure channel, Error analysis, error rates, finite-length analysis, finite-length performance, maximum a posteriori threshold, maximum likelihood estimation, parity check codes, regular sparse codes, spatially-coupled LDPC codes, TEP decoding, tree-structured expectation propagation, underlying regular code, very large code length, window-sliding scheme

@inproceedings{Olmos2012,

title = {Finite-Length Performance of Spatially-Coupled LDPC Codes under TEP Decoding},

author = {Pablo M Olmos and Fernando Perez-Cruz and Luis Salamanca and Juan Jose Murillo-Fuentes},

url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6404722},

isbn = {978-1-4673-0223-4},

year = {2012},

date = {2012-01-01},

booktitle = {2012 IEEE Information Theory Workshop},

pages = {1--6},

publisher = {IEEE},

address = {Lausanne},

keywords = {asymptotic limit, belief propagation decoding, Complexity theory, convolutional codes, convolutional LDPC codes, Decoding, decoding latency, decoding threshold, erasure channel, Error analysis, error rates, finite-length analysis, finite-length performance, maximum a posteriori threshold, maximum likelihood estimation, parity check codes, regular sparse codes, spatially-coupled LDPC codes, TEP decoding, tree-structured expectation propagation, underlying regular code, very large code length, window-sliding scheme},

pubstate = {published},

tppubtype = {inproceedings}

}

### 2011

Salamanca, Luis; Olmos, Pablo M; Murillo-Fuentes, Juan Jose; Perez-Cruz, Fernando

MAP Decoding for LDPC Codes over the Binary Erasure Channel Artículo en actas

En: 2011 IEEE Information Theory Workshop, pp. 145–149, IEEE, Paraty, 2011, ISBN: 978-1-4577-0437-6.

Resumen | Enlaces | BibTeX | Etiquetas: binary erasure channel, Channel Coding, computational complexity, Decoding, generalized peeling decoder, generalized tree-structured expectation propagatio, graphical models, Iterative decoding, LDPC codes, MAP decoding, MAP decoding algorithm, Maximum likelihood decoding, parity check codes, TEP decoder, tree graph theory, Tree graphs, tree-structured expectation propagation, trees (mathematics)

@inproceedings{Salamanca2011a,

title = {MAP Decoding for LDPC Codes over the Binary Erasure Channel},

author = {Luis Salamanca and Pablo M Olmos and Juan Jose Murillo-Fuentes and Fernando Perez-Cruz},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6089364},

isbn = {978-1-4577-0437-6},

year = {2011},

date = {2011-01-01},

booktitle = {2011 IEEE Information Theory Workshop},

pages = {145--149},

publisher = {IEEE},

address = {Paraty},

abstract = {In this paper, we propose a decoding algorithm for LDPC codes that achieves the MAP solution over the BEC. This algorithm, denoted as generalized tree-structured expectation propagation (GTEP), extends the idea of our previous work, the TEP decoder. The GTEP modifies the graph by eliminating a check node of any degree and merging this information with the remaining graph. The GTEP decoder upon completion either provides the unique MAP solution or a tree graph in which the number of parent nodes indicates the multiplicity of the MAP solution. This algorithm can be easily described for the BEC, and it can be cast as a generalized peeling decoder. The GTEP naturally optimizes the complexity of the decoder, by looking for checks nodes of minimum degree to be eliminated first.},

keywords = {binary erasure channel, Channel Coding, computational complexity, Decoding, generalized peeling decoder, generalized tree-structured expectation propagatio, graphical models, Iterative decoding, LDPC codes, MAP decoding, MAP decoding algorithm, Maximum likelihood decoding, parity check codes, TEP decoder, tree graph theory, Tree graphs, tree-structured expectation propagation, trees (mathematics)},

pubstate = {published},

tppubtype = {inproceedings}

}