@inproceedings{Koch2008,
title = {On Multipath Fading Channels at High SNR},
author = {Koch, Tobias and Lapidoth, Amos},
url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4595252},
isbn = {978-1-4244-2256-2},
year = {2008},
date = {2008-01-01},
booktitle = {2008 IEEE International Symposium on Information Theory},
pages = {1572--1576},
publisher = {IEEE},
address = {Toronto},
abstract = {This paper studies the capacity of discrete-time multipath fading channels. It is assumed that the number of paths is finite, i.e., that the channel output is influenced by the present and by the L previous channel inputs. A noncoherent channel model is considered where neither transmitter nor receiver are cognizant of the fading's realization, but both are aware of its statistic. The focus is on capacity at high signal-to-noise ratios (SNR). In particular, the capacity pre-loglog-defined as the limiting ratio of the capacity to loglog(SNR) as SNR tends to infinity-is studied. It is shown that, irrespective of the number of paths L, the capacity pre-loglog is 1.},
keywords = {channel capacity, Delay, discrete time systems, discrete-time channels, Entropy, Fading, fading channels, Frequency, Mathematical model, multipath channels, multipath fading channels, noncoherent channel model, Random variables, Signal to noise ratio, signal-to-noise ratios, SNR, statistics, Transmitters},
pubstate = {published},
tppubtype = {inproceedings}
}

This paper studies the capacity of discrete-time multipath fading channels. It is assumed that the number of paths is finite, i.e., that the channel output is influenced by the present and by the L previous channel inputs. A noncoherent channel model is considered where neither transmitter nor receiver are cognizant of the fading's realization, but both are aware of its statistic. The focus is on capacity at high signal-to-noise ratios (SNR). In particular, the capacity pre-loglog-defined as the limiting ratio of the capacity to loglog(SNR) as SNR tends to infinity-is studied. It is shown that, irrespective of the number of paths L, the capacity pre-loglog is 1.

@inproceedings{Koch2008b,
title = {Multipath Channels of Unbounded Capacity},
author = {Koch, Tobias and Lapidoth, Amos},
url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4736611},
isbn = {978-1-4244-2481-8},
year = {2008},
date = {2008-01-01},
booktitle = {2008 IEEE 25th Convention of Electrical and Electronics Engineers in Israel},
pages = {640--644},
publisher = {IEEE},
address = {Eilat},
abstract = {The capacity of discrete-time, noncoherent, multipath fading channels is considered. It is shown that if the variances of the path gains decay faster than exponentially, then capacity is unbounded in the transmit power.},
keywords = {channel capacity, discrete-time capacity, Entropy, Fading, fading channels, Frequency, H infinity control, Information rates, multipath channels, multipath fading channels, noncoherent, noncoherent capacity, path gains decay, Signal to noise ratio, statistics, Transmitters, unbounded capacity},
pubstate = {published},
tppubtype = {inproceedings}
}

The capacity of discrete-time, noncoherent, multipath fading channels is considered. It is shown that if the variances of the path gains decay faster than exponentially, then capacity is unbounded in the transmit power.