## 2016 |

Durisi, Giuseppe; Koch, Tobias; Ostman, Johan; Polyanskiy, Yury; Yang, Wei Short-Packet Communications Over Multiple-Antenna Rayleigh-Fading Channels Journal Article IEEE Transactions on Communications, 64 (2), pp. 618–629, 2016, ISSN: 0090-6778. Abstract | Links | BibTeX | Tags: diversity branches, Encoding, ergodic capacity, Fading, fading channels, finite-blocklength information theory, finiteblocklength information theory, infinite-blocklength performance metrics, Journal, machine-type communication systems, maximum coding rate, Mission critical systems, mission-critical machine-type communications, multiple antennas, multiple-antenna Rayleigh block-fading channels, Multiplexing, optimal number, outage capacity, rate gain, Rayleigh channels, Receivers, Reliability, short-packet communications, spatial multiplexing, Throughput, Time-frequency analysis, time-frequency-spatial degrees of freedom, transmit antennas, transmit diversity, Transmitting antennas, Ultra-reliable low-latency communications @article{Durisi2016b, title = {Short-Packet Communications Over Multiple-Antenna Rayleigh-Fading Channels}, author = {Giuseppe Durisi and Tobias Koch and Johan Ostman and Yury Polyanskiy and Wei Yang}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7362178}, doi = {10.1109/TCOMM.2015.2511087}, issn = {0090-6778}, year = {2016}, date = {2016-02-01}, journal = {IEEE Transactions on Communications}, volume = {64}, number = {2}, pages = {618--629}, publisher = {IEEE}, abstract = {Motivated by the current interest in ultra-reliable, low-latency, machine-type communication systems, we investigate the tradeoff between reliability, throughput, and latency in the transmission of information over multiple-antenna Rayleigh block-fading channels. Specifically, we obtain finite-blocklength, finite-SNR upper and lower bounds on the maximum coding rate achievable over such channels for a given constraint on the packet error probability. Numerical evidence suggests that our bounds delimit tightly the maximum coding rate already for short blocklengths (packets of about 100 symbols). Furthermore, our bounds reveal the existence of a tradeoff between the rate gain obtainable by spreading each codeword over all available time-frequency-spatial degrees of freedom, and the rate loss caused by the need of estimating the fading coefficients over these degrees of freedom. In particular, our bounds allow us to determine the optimal number of transmit antennas and the optimal number of time-frequency diversity branches that maximize the rate. Finally, we show that infinite-blocklength performance metrics such as the ergodic capacity and the outage capacity yield inaccurate throughput estimates}, keywords = {diversity branches, Encoding, ergodic capacity, Fading, fading channels, finite-blocklength information theory, finiteblocklength information theory, infinite-blocklength performance metrics, Journal, machine-type communication systems, maximum coding rate, Mission critical systems, mission-critical machine-type communications, multiple antennas, multiple-antenna Rayleigh block-fading channels, Multiplexing, optimal number, outage capacity, rate gain, Rayleigh channels, Receivers, Reliability, short-packet communications, spatial multiplexing, Throughput, Time-frequency analysis, time-frequency-spatial degrees of freedom, transmit antennas, transmit diversity, Transmitting antennas, Ultra-reliable low-latency communications}, pubstate = {published}, tppubtype = {article} } Motivated by the current interest in ultra-reliable, low-latency, machine-type communication systems, we investigate the tradeoff between reliability, throughput, and latency in the transmission of information over multiple-antenna Rayleigh block-fading channels. Specifically, we obtain finite-blocklength, finite-SNR upper and lower bounds on the maximum coding rate achievable over such channels for a given constraint on the packet error probability. Numerical evidence suggests that our bounds delimit tightly the maximum coding rate already for short blocklengths (packets of about 100 symbols). Furthermore, our bounds reveal the existence of a tradeoff between the rate gain obtainable by spreading each codeword over all available time-frequency-spatial degrees of freedom, and the rate loss caused by the need of estimating the fading coefficients over these degrees of freedom. In particular, our bounds allow us to determine the optimal number of transmit antennas and the optimal number of time-frequency diversity branches that maximize the rate. Finally, we show that infinite-blocklength performance metrics such as the ergodic capacity and the outage capacity yield inaccurate throughput estimates |

## 2014 |

Ostman, Johan; Yang, Wei; Durisi, Giuseppe; Koch, Tobias Diversity Versus Multiplexing at Finite Blocklength Inproceedings 2014 11th International Symposium on Wireless Communications Systems (ISWCS), pp. 702–706, IEEE, Barcelona, 2014, ISBN: 978-1-4799-5863-4. Abstract | Links | BibTeX | Tags: Antennas, Channel Coding, channel selectivity, Coherence, delay-sensitive ultra-reliable communication links, diversity reception, diversity-exploiting schemes, diversity-multiplexing tradeoff, Fading, finite blocklength analysis, maximum channel coding rate, multiple-antenna block-memoryless Rayleigh-fading, Multiplexing, nonasymptotic bounds, packet size, radio links, Rayleigh channels, Time-frequency analysis, Transmitters, Upper bound @inproceedings{Ostman2014, title = {Diversity Versus Multiplexing at Finite Blocklength}, author = {Johan Ostman and Wei Yang and Giuseppe Durisi and Tobias Koch}, url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6933444}, isbn = {978-1-4799-5863-4}, year = {2014}, date = {2014-01-01}, booktitle = {2014 11th International Symposium on Wireless Communications Systems (ISWCS)}, pages = {702--706}, publisher = {IEEE}, address = {Barcelona}, abstract = {A finite blocklenth analysis of the diversity-multiplexing tradeoff is presented, based on nonasymptotic bounds on the maximum channel coding rate of multiple-antenna block-memoryless Rayleigh-fading channels. The bounds in this paper allow one to numerically assess for which packet size, number of antennas, and degree of channel selectivity, diversity-exploiting schemes are close to optimal, and when instead the available spatial degrees of freedom should be used to provide spatial multiplexing. This finite blocklength view on the diversity-multiplexing tradeoff provides insights on the design of delay-sensitive ultra-reliable communication links.}, keywords = {Antennas, Channel Coding, channel selectivity, Coherence, delay-sensitive ultra-reliable communication links, diversity reception, diversity-exploiting schemes, diversity-multiplexing tradeoff, Fading, finite blocklength analysis, maximum channel coding rate, multiple-antenna block-memoryless Rayleigh-fading, Multiplexing, nonasymptotic bounds, packet size, radio links, Rayleigh channels, Time-frequency analysis, Transmitters, Upper bound}, pubstate = {published}, tppubtype = {inproceedings} } A finite blocklenth analysis of the diversity-multiplexing tradeoff is presented, based on nonasymptotic bounds on the maximum channel coding rate of multiple-antenna block-memoryless Rayleigh-fading channels. The bounds in this paper allow one to numerically assess for which packet size, number of antennas, and degree of channel selectivity, diversity-exploiting schemes are close to optimal, and when instead the available spatial degrees of freedom should be used to provide spatial multiplexing. This finite blocklength view on the diversity-multiplexing tradeoff provides insights on the design of delay-sensitive ultra-reliable communication links. |

Yang, Wei; Durisi, Giuseppe; Koch, Tobias; Polyanskiy, Yury Quasi-Static Multiple-Antenna Fading Channels at Finite Blocklength Journal Article IEEE Transactions on Information Theory, 60 (7), pp. 4232–4265, 2014, ISSN: 0018-9448. Abstract | Links | BibTeX | Tags: channel dispersion, Decoding, error probability, finite blocklength regime, MIMO, MIMO channel, outage probability, quasi-static fading channel, Rayleigh channels, Receivers, Transmitters @article{Yang2014bb, title = {Quasi-Static Multiple-Antenna Fading Channels at Finite Blocklength}, author = {Wei Yang and Giuseppe Durisi and Tobias Koch and Yury Polyanskiy}, url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6802432 http://arxiv.org/abs/1311.2012}, issn = {0018-9448}, year = {2014}, date = {2014-01-01}, journal = {IEEE Transactions on Information Theory}, volume = {60}, number = {7}, pages = {4232--4265}, publisher = {IEEE}, abstract = {This paper investigates the maximal achievable rate for a given blocklength and error probability over quasi-static multiple-input multiple-output fading channels, with and without channel state information at the transmitter and/or the receiver. The principal finding is that outage capacity, despite being an asymptotic quantity, is a sharp proxy for the finite-blocklength fundamental limits of slow-fading channels. Specifically, the channel dispersion is shown to be zero regardless of whether the fading realizations are available at both transmitter and receiver, at only one of them, or at neither of them. These results follow from analytically tractable converse and achievability bounds. Numerical evaluation of these bounds verifies that zero dispersion may indeed imply fast convergence to the outage capacity as the blocklength increases. In the example of a particular 1 $,times,$ 2 single-input multiple-output Rician fading channel, the blocklength required to achieve 90% of capacity is about an order of magnitude smaller compared with the blocklength required for an AWGN channel with the same capacity. For this specific scenario, the coding/decoding schemes adopted in the LTE-Advanced standard are benchmarked against the finite-blocklength achievability and converse bounds.}, keywords = {channel dispersion, Decoding, error probability, finite blocklength regime, MIMO, MIMO channel, outage probability, quasi-static fading channel, Rayleigh channels, Receivers, Transmitters}, pubstate = {published}, tppubtype = {article} } This paper investigates the maximal achievable rate for a given blocklength and error probability over quasi-static multiple-input multiple-output fading channels, with and without channel state information at the transmitter and/or the receiver. The principal finding is that outage capacity, despite being an asymptotic quantity, is a sharp proxy for the finite-blocklength fundamental limits of slow-fading channels. Specifically, the channel dispersion is shown to be zero regardless of whether the fading realizations are available at both transmitter and receiver, at only one of them, or at neither of them. These results follow from analytically tractable converse and achievability bounds. Numerical evaluation of these bounds verifies that zero dispersion may indeed imply fast convergence to the outage capacity as the blocklength increases. In the example of a particular 1 $,times,$ 2 single-input multiple-output Rician fading channel, the blocklength required to achieve 90% of capacity is about an order of magnitude smaller compared with the blocklength required for an AWGN channel with the same capacity. For this specific scenario, the coding/decoding schemes adopted in the LTE-Advanced standard are benchmarked against the finite-blocklength achievability and converse bounds. |

## 2013 |

Koch, Tobias; Lapidoth, Amos At Low SNR, Asymmetric Quantizers are Better Journal Article IEEE Transactions on Information Theory, 59 (9), pp. 5421–5445, 2013, ISSN: 0018-9448. Abstract | Links | BibTeX | Tags: 1-bit quantizer, asymmetric signaling constellation, asymmetric threshold quantizers, asymptotic power loss, Capacity per unit energy, channel capacity, discrete-time Gaussian channel, flash-signaling input distribution, Gaussian channel, Gaussian channels, low signal-to-noise ratio (SNR), quantisation (signal), quantization, Rayleigh channels, Rayleigh-fading channel, signal-to-noise ratio, SNR, spectral efficiency @article{Koch2013, title = {At Low SNR, Asymmetric Quantizers are Better}, author = {Tobias Koch and Amos Lapidoth}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6545291}, issn = {0018-9448}, year = {2013}, date = {2013-01-01}, journal = {IEEE Transactions on Information Theory}, volume = {59}, number = {9}, pages = {5421--5445}, abstract = {We study the capacity of the discrete-time Gaussian channel when its output is quantized with a 1-bit quantizer. We focus on the low signal-to-noise ratio (SNR) regime, where communication at very low spectral efficiencies takes place. In this regime, a symmetric threshold quantizer is known to reduce channel capacity by a factor of 2/$pi$, i.e., to cause an asymptotic power loss of approximately 2 dB. Here, it is shown that this power loss can be avoided by using asymmetric threshold quantizers and asymmetric signaling constellations. To avoid this power loss, flash-signaling input distributions are essential. Consequently, 1-bit output quantization of the Gaussian channel reduces spectral efficiency. Threshold quantizers are not only asymptotically optimal: at every fixed SNR, a threshold quantizer maximizes capacity among all 1-bit output quantizers. The picture changes on the Rayleigh-fading channel. In the noncoherent case, a 1-bit output quantizer causes an unavoidable low-SNR asymptotic power loss. In the coherent case, however, this power loss is avoidable provided that we allow the quantizer to depend on the fading level.}, keywords = {1-bit quantizer, asymmetric signaling constellation, asymmetric threshold quantizers, asymptotic power loss, Capacity per unit energy, channel capacity, discrete-time Gaussian channel, flash-signaling input distribution, Gaussian channel, Gaussian channels, low signal-to-noise ratio (SNR), quantisation (signal), quantization, Rayleigh channels, Rayleigh-fading channel, signal-to-noise ratio, SNR, spectral efficiency}, pubstate = {published}, tppubtype = {article} } We study the capacity of the discrete-time Gaussian channel when its output is quantized with a 1-bit quantizer. We focus on the low signal-to-noise ratio (SNR) regime, where communication at very low spectral efficiencies takes place. In this regime, a symmetric threshold quantizer is known to reduce channel capacity by a factor of 2/$pi$, i.e., to cause an asymptotic power loss of approximately 2 dB. Here, it is shown that this power loss can be avoided by using asymmetric threshold quantizers and asymmetric signaling constellations. To avoid this power loss, flash-signaling input distributions are essential. Consequently, 1-bit output quantization of the Gaussian channel reduces spectral efficiency. Threshold quantizers are not only asymptotically optimal: at every fixed SNR, a threshold quantizer maximizes capacity among all 1-bit output quantizers. The picture changes on the Rayleigh-fading channel. In the noncoherent case, a 1-bit output quantizer causes an unavoidable low-SNR asymptotic power loss. In the coherent case, however, this power loss is avoidable provided that we allow the quantizer to depend on the fading level. |

Bravo-Santos, Ángel M Polar Codes for the Rayleigh Fading Channel Journal Article IEEE Communications Letters, PP (99), pp. 1–4, 2013, ISSN: 1089-7798. Abstract | Links | BibTeX | Tags: fading channels, polar codes, Rayleigh channels @article{Bravo-Santos2013a, title = {Polar Codes for the Rayleigh Fading Channel}, author = {Ángel M Bravo-Santos}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6663750}, issn = {1089-7798}, year = {2013}, date = {2013-01-01}, journal = {IEEE Communications Letters}, volume = {PP}, number = {99}, pages = {1--4}, abstract = {The application of polar codes for the Rayleigh fading channel is considered. We construct polar codes for the block Rayleigh fading channel with known channel side information (CSI) and for the Rayleigh channel with known channel distribution information (CDI). The construction of polar codes for the Rayleigh fading with known CSI allows them to work with any signal noise ratio (SNR). The rate of the codeword is adapted correspondingly. Polar codes for Rayleigh fading with known CDI suffer a penalty for not having complete information about the channel. The penalty, however, is small, about 1.3 dB. We perform simulations and compare the obtained results with the theoretical limits. We show that they are close to the theoretical limit. We compare polar codes with other good codes and the results show that long polar codes are closer to the limit.}, keywords = {fading channels, polar codes, Rayleigh channels}, pubstate = {published}, tppubtype = {article} } The application of polar codes for the Rayleigh fading channel is considered. We construct polar codes for the block Rayleigh fading channel with known channel side information (CSI) and for the Rayleigh channel with known channel distribution information (CDI). The construction of polar codes for the Rayleigh fading with known CSI allows them to work with any signal noise ratio (SNR). The rate of the codeword is adapted correspondingly. Polar codes for Rayleigh fading with known CDI suffer a penalty for not having complete information about the channel. The penalty, however, is small, about 1.3 dB. We perform simulations and compare the obtained results with the theoretical limits. We show that they are close to the theoretical limit. We compare polar codes with other good codes and the results show that long polar codes are closer to the limit. |

## 2012 |

Durisi, Giuseppe; Koch, Tobias; Polyanskiy, Yury Diversity Versus Channel Knowledge at Finite Block-Length Inproceedings 2012 IEEE Information Theory Workshop, pp. 572–576, IEEE, Lausanne, 2012, ISBN: 978-1-4673-0223-4. Abstract | Links | BibTeX | Tags: Approximation methods, block error probability, channel coherence time, Channel estimation, channel knowledge, Coherence, diversity, diversity reception, error statistics, Fading, finite block-length, maximal achievable rate, noncoherent setting, Rayleigh block-fading channels, Rayleigh channels, Receivers, Signal to noise ratio, Upper bound @inproceedings{Durisi2012, title = {Diversity Versus Channel Knowledge at Finite Block-Length}, author = {Giuseppe Durisi and Tobias Koch and Yury Polyanskiy}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6404740}, isbn = {978-1-4673-0223-4}, year = {2012}, date = {2012-01-01}, booktitle = {2012 IEEE Information Theory Workshop}, pages = {572--576}, publisher = {IEEE}, address = {Lausanne}, abstract = {We study the maximal achievable rate R*(n, ∈) for a given block-length n and block error probability o over Rayleigh block-fading channels in the noncoherent setting and in the finite block-length regime. Our results show that for a given block-length and error probability, R*(n, ∈) is not monotonic in the channel's coherence time, but there exists a rate maximizing coherence time that optimally trades between diversity and cost of estimating the channel.}, keywords = {Approximation methods, block error probability, channel coherence time, Channel estimation, channel knowledge, Coherence, diversity, diversity reception, error statistics, Fading, finite block-length, maximal achievable rate, noncoherent setting, Rayleigh block-fading channels, Rayleigh channels, Receivers, Signal to noise ratio, Upper bound}, pubstate = {published}, tppubtype = {inproceedings} } We study the maximal achievable rate R*(n, ∈) for a given block-length n and block error probability o over Rayleigh block-fading channels in the noncoherent setting and in the finite block-length regime. Our results show that for a given block-length and error probability, R*(n, ∈) is not monotonic in the channel's coherence time, but there exists a rate maximizing coherence time that optimally trades between diversity and cost of estimating the channel. |