## 2009 |

Martino, Luca; Miguez, Joaquin A Novel Rejection Sampling Scheme for Posterior Probability Distributions Inproceedings 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2921–2924, IEEE, Taipei, 2009, ISSN: 1520-6149. Abstract | Links | BibTeX | Tags: Additive noise, arbitrary target probability distributions, Bayes methods, Bayesian methods, Monte Carlo integration, Monte Carlo methods, Monte Carlo techniques, Overbounding, posterior probability distributions, Probability density function, Probability distribution, Proposals, Rejection sampling, rejection sampling scheme, Sampling methods, Signal processing algorithms, signal sampling, Upper bound @inproceedings{Martino2009, title = {A Novel Rejection Sampling Scheme for Posterior Probability Distributions}, author = {Luca Martino and Joaquin Miguez}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4960235}, issn = {1520-6149}, year = {2009}, date = {2009-01-01}, booktitle = {2009 IEEE International Conference on Acoustics, Speech and Signal Processing}, pages = {2921--2924}, publisher = {IEEE}, address = {Taipei}, abstract = {Rejection sampling (RS) is a well-known method to draw from arbitrary target probability distributions, which has important applications by itself or as a building block for more sophisticated Monte Carlo techniques. The main limitation to the use of RS is the need to find an adequate upper bound for the ratio of the target probability density function (pdf) over the proposal pdf from which the samples are generated. There are no general methods to analytically find this bound, except in the particular case in which the target pdf is log-concave. In this paper we adopt a Bayesian view of the problem and propose a general RS scheme to draw from the posterior pdf of a signal of interest using its prior density as a proposal function. The method enables the analytical calculation of the bound and can be applied to a large class of target densities. We illustrate its use with a simple numerical example.}, keywords = {Additive noise, arbitrary target probability distributions, Bayes methods, Bayesian methods, Monte Carlo integration, Monte Carlo methods, Monte Carlo techniques, Overbounding, posterior probability distributions, Probability density function, Probability distribution, Proposals, Rejection sampling, rejection sampling scheme, Sampling methods, Signal processing algorithms, signal sampling, Upper bound}, pubstate = {published}, tppubtype = {inproceedings} } Rejection sampling (RS) is a well-known method to draw from arbitrary target probability distributions, which has important applications by itself or as a building block for more sophisticated Monte Carlo techniques. The main limitation to the use of RS is the need to find an adequate upper bound for the ratio of the target probability density function (pdf) over the proposal pdf from which the samples are generated. There are no general methods to analytically find this bound, except in the particular case in which the target pdf is log-concave. In this paper we adopt a Bayesian view of the problem and propose a general RS scheme to draw from the posterior pdf of a signal of interest using its prior density as a proposal function. The method enables the analytical calculation of the bound and can be applied to a large class of target densities. We illustrate its use with a simple numerical example. |