## 2015 |

## Journal Articles |

Ramírez, David; Schreier, Peter J; Via, Javier; Santamaria, Ignacio; Scharf, Louis L Detection of Multivariate Cyclostationarity Journal Article IEEE Transactions on Signal Processing, 63 (20), pp. 5395–5408, 2015, ISSN: 1053-587X. Abstract | Links | BibTeX | Tags: ad hoc function, asymptotic GLRT, asymptotic LMPIT, block circulant, block-Toeplitz structure, Correlation, covariance matrices, Covariance matrix, covariance structure, cycle period, cyclic spectrum, Cyclostationarity, Detectors, Frequency-domain analysis, generalized likelihood ratio test, generalized likelihood ratio test (GLRT), hypothesis testing problem, locally most powerful invariant test, locally most powerful invariant test (LMPIT), Loe{&amp;}{#}x0300, maximum likelihood estimation, multivariate cyclostationarity detection, power spectral density, random processes, s theorem, scalar valued CS time series, signal detection, spectral analysis, statistical testing, Testing, Time series, Time series analysis, Toeplitz matrices, Toeplitz matrix, ve spectrum, vector valued random process cyclostationary, vector valued WSS time series, wide sense stationary, Wijsman theorem, Wijsman{&amp;}{#}x2019 @article{Ramirez2015, title = {Detection of Multivariate Cyclostationarity}, author = {David Ramírez and Peter J Schreier and Javier Via and Ignacio Santamaria and Louis L Scharf}, url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=7134806}, doi = {10.1109/TSP.2015.2450201}, issn = {1053-587X}, year = {2015}, date = {2015-10-01}, journal = {IEEE Transactions on Signal Processing}, volume = {63}, number = {20}, pages = {5395--5408}, publisher = {IEEE}, abstract = {This paper derives an asymptotic generalized likelihood ratio test (GLRT) and an asymptotic locally most powerful invariant test (LMPIT) for two hypothesis testing problems: 1) Is a vector-valued random process cyclostationary (CS) or is it wide-sense stationary (WSS)? 2) Is a vector-valued random process CS or is it nonstationary? Our approach uses the relationship between a scalar-valued CS time series and a vector-valued WSS time series for which the knowledge of the cycle period is required. This relationship allows us to formulate the problem as a test for the covariance structure of the observations. The covariance matrix of the observations has a block-Toeplitz structure for CS and WSS processes. By considering the asymptotic case where the covariance matrix becomes block-circulant we are able to derive its maximum likelihood (ML) estimate and thus an asymptotic GLRT. Moreover, using Wijsman's theorem, we also obtain an asymptotic LMPIT. These detectors may be expressed in terms of the Loève spectrum, the cyclic spectrum, and the power spectral density, establishing how to fuse the information in these spectra for an asymptotic GLRT and LMPIT. This goes beyond the state-of-the-art, where it is common practice to build detectors of cyclostationarity from ad-hoc functions of these spectra.}, keywords = {ad hoc function, asymptotic GLRT, asymptotic LMPIT, block circulant, block-Toeplitz structure, Correlation, covariance matrices, Covariance matrix, covariance structure, cycle period, cyclic spectrum, Cyclostationarity, Detectors, Frequency-domain analysis, generalized likelihood ratio test, generalized likelihood ratio test (GLRT), hypothesis testing problem, locally most powerful invariant test, locally most powerful invariant test (LMPIT), Loe{&amp;}{#}x0300, maximum likelihood estimation, multivariate cyclostationarity detection, power spectral density, random processes, s theorem, scalar valued CS time series, signal detection, spectral analysis, statistical testing, Testing, Time series, Time series analysis, Toeplitz matrices, Toeplitz matrix, ve spectrum, vector valued random process cyclostationary, vector valued WSS time series, wide sense stationary, Wijsman theorem, Wijsman{&amp;}{#}x2019}, pubstate = {published}, tppubtype = {article} } This paper derives an asymptotic generalized likelihood ratio test (GLRT) and an asymptotic locally most powerful invariant test (LMPIT) for two hypothesis testing problems: 1) Is a vector-valued random process cyclostationary (CS) or is it wide-sense stationary (WSS)? 2) Is a vector-valued random process CS or is it nonstationary? Our approach uses the relationship between a scalar-valued CS time series and a vector-valued WSS time series for which the knowledge of the cycle period is required. This relationship allows us to formulate the problem as a test for the covariance structure of the observations. The covariance matrix of the observations has a block-Toeplitz structure for CS and WSS processes. By considering the asymptotic case where the covariance matrix becomes block-circulant we are able to derive its maximum likelihood (ML) estimate and thus an asymptotic GLRT. Moreover, using Wijsman's theorem, we also obtain an asymptotic LMPIT. These detectors may be expressed in terms of the Loève spectrum, the cyclic spectrum, and the power spectral density, establishing how to fuse the information in these spectra for an asymptotic GLRT and LMPIT. This goes beyond the state-of-the-art, where it is common practice to build detectors of cyclostationarity from ad-hoc functions of these spectra. |

## 2012 |

## Inproceedings |

O'Mahony, Niamh; Perez-Cruz, Fernando A novel Sequential Bayesian Approach to GPS Acquisition Inproceedings 2012 3rd International Workshop on Cognitive Information Processing (CIP), pp. 1–6, IEEE, Baiona, 2012, ISBN: 978-1-4673-1878-5. Abstract | Links | BibTeX | Tags: Bayes methods, coarse synchronization, Correlators, data acquisition, Delay, Doppler effect, Global Positioning System, GPS acquisition, GPS signal parameters, learning (artificial intelligence), online learning algorithm, Receivers, Satellites, sequential Bayesian approach, signal acquisition, signal detection, Synchronization @inproceedings{O'Mahony2012, title = {A novel Sequential Bayesian Approach to GPS Acquisition}, author = {Niamh O'Mahony and Fernando Perez-Cruz}, url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6232921}, isbn = {978-1-4673-1878-5}, year = {2012}, date = {2012-01-01}, booktitle = {2012 3rd International Workshop on Cognitive Information Processing (CIP)}, pages = {1--6}, publisher = {IEEE}, address = {Baiona}, abstract = {In this work, a novel online learning algorithm is presented for the synchronization of Global Positioning System (GPS) signal parameters at the acquisition, or coarse synchronization, stage. The algorithm is based on a Bayesian approach, which has, to date, not been exploited for the acquisition problem. Simulated results are presented to illustrate the algorithm performance, in terms of accuracy and acquisition time, along with results from the acquisition of signals from live GPS satellites using both the new algorithm and a state-of-the-art approach for comparison.}, keywords = {Bayes methods, coarse synchronization, Correlators, data acquisition, Delay, Doppler effect, Global Positioning System, GPS acquisition, GPS signal parameters, learning (artificial intelligence), online learning algorithm, Receivers, Satellites, sequential Bayesian approach, signal acquisition, signal detection, Synchronization}, pubstate = {published}, tppubtype = {inproceedings} } In this work, a novel online learning algorithm is presented for the synchronization of Global Positioning System (GPS) signal parameters at the acquisition, or coarse synchronization, stage. The algorithm is based on a Bayesian approach, which has, to date, not been exploited for the acquisition problem. Simulated results are presented to illustrate the algorithm performance, in terms of accuracy and acquisition time, along with results from the acquisition of signals from live GPS satellites using both the new algorithm and a state-of-the-art approach for comparison. |

## 2008 |

## Inproceedings |

Vila-Forcen, J E; Artés-Rodríguez, Antonio; Garcia-Frias, J Compressive Sensing Detection of Stochastic Signals Inproceedings 2008 42nd Annual Conference on Information Sciences and Systems, pp. 956–960, IEEE, Princeton, 2008, ISBN: 978-1-4244-2246-3. Abstract | Links | BibTeX | Tags: Additive white noise, AWGN, compressive sensing detection, dimensionality reduction techniques, Distortion measurement, Gaussian noise, matrix algebra, Mutual information, optimized projections, projection matrix, signal detection, Signal processing, signal reconstruction, Stochastic processes, stochastic signals, Support vector machine classification, Support vector machines, SVM @inproceedings{Vila-Forcen2008, title = {Compressive Sensing Detection of Stochastic Signals}, author = {J E Vila-Forcen and Antonio Artés-Rodríguez and J Garcia-Frias}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4558656}, isbn = {978-1-4244-2246-3}, year = {2008}, date = {2008-01-01}, booktitle = {2008 42nd Annual Conference on Information Sciences and Systems}, pages = {956--960}, publisher = {IEEE}, address = {Princeton}, abstract = {Inspired by recent work in compressive sensing, we propose a framework for the detection of stochastic signals from optimized projections. In order to generate a good projection matrix, we use dimensionality reduction techniques based on the maximization of the mutual information between the projected signals and their corresponding class labels. In addition, classification techniques based on support vector machines (SVMs) are applied for the final decision process. Simulation results show that the realizations of the stochastic process are detected with higher accuracy and lower complexity than a scheme performing signal reconstruction first, followed by detection based on the reconstructed signal.}, keywords = {Additive white noise, AWGN, compressive sensing detection, dimensionality reduction techniques, Distortion measurement, Gaussian noise, matrix algebra, Mutual information, optimized projections, projection matrix, signal detection, Signal processing, signal reconstruction, Stochastic processes, stochastic signals, Support vector machine classification, Support vector machines, SVM}, pubstate = {published}, tppubtype = {inproceedings} } Inspired by recent work in compressive sensing, we propose a framework for the detection of stochastic signals from optimized projections. In order to generate a good projection matrix, we use dimensionality reduction techniques based on the maximization of the mutual information between the projected signals and their corresponding class labels. In addition, classification techniques based on support vector machines (SVMs) are applied for the final decision process. Simulation results show that the realizations of the stochastic process are detected with higher accuracy and lower complexity than a scheme performing signal reconstruction first, followed by detection based on the reconstructed signal. |