2015
Fernandez-Bes, Jesus; Elvira, Victor; Vaerenbergh, Steven Van
A Probabilistic Least-Mean-Squares Filter Artículo en actas
En: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2199–2203, IEEE, Brisbane, 2015, ISBN: 978-1-4673-6997-8.
Resumen | Enlaces | BibTeX | Etiquetas: adaptable step size LMS algorithm, Adaptation models, adaptive filtering, Approximation algorithms, Bayesian machine learning techniques, efficient approximation algorithm, filtering theory, Least squares approximations, least-mean-squares, probabilistic least mean squares filter, Probabilistic logic, probabilisticmodels, Probability, Signal processing algorithms, Standards, state-space models
@inproceedings{Fernandez-Bes2015,
title = {A Probabilistic Least-Mean-Squares Filter},
author = {Jesus Fernandez-Bes and Victor Elvira and Steven Van Vaerenbergh},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7178361 http://www.tsc.uc3m.es/~velvira/papers/ICASSP2015_bes.pdf},
doi = {10.1109/ICASSP.2015.7178361},
isbn = {978-1-4673-6997-8},
year = {2015},
date = {2015-04-01},
booktitle = {2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages = {2199--2203},
publisher = {IEEE},
address = {Brisbane},
abstract = {We introduce a probabilistic approach to the LMS filter. By means of an efficient approximation, this approach provides an adaptable step-size LMS algorithm together with a measure of uncertainty about the estimation. In addition, the proposed approximation preserves the linear complexity of the standard LMS. Numerical results show the improved performance of the algorithm with respect to standard LMS and state-of-the-art algorithms with similar complexity. The goal of this work, therefore, is to open the door to bring somemore Bayesian machine learning techniques to adaptive filtering.},
keywords = {adaptable step size LMS algorithm, Adaptation models, adaptive filtering, Approximation algorithms, Bayesian machine learning techniques, efficient approximation algorithm, filtering theory, Least squares approximations, least-mean-squares, probabilistic least mean squares filter, Probabilistic logic, probabilisticmodels, Probability, Signal processing algorithms, Standards, state-space models},
pubstate = {published},
tppubtype = {inproceedings}
}
We introduce a probabilistic approach to the LMS filter. By means of an efficient approximation, this approach provides an adaptable step-size LMS algorithm together with a measure of uncertainty about the estimation. In addition, the proposed approximation preserves the linear complexity of the standard LMS. Numerical results show the improved performance of the algorithm with respect to standard LMS and state-of-the-art algorithms with similar complexity. The goal of this work, therefore, is to open the door to bring somemore Bayesian machine learning techniques to adaptive filtering.