## 2013 |

Koch, Tobias; Lapidoth, Amos At Low SNR, Asymmetric Quantizers are Better Journal Article IEEE Transactions on Information Theory, 59 (9), pp. 5421–5445, 2013, ISSN: 0018-9448. Abstract | Links | BibTeX | Tags: 1-bit quantizer, asymmetric signaling constellation, asymmetric threshold quantizers, asymptotic power loss, Capacity per unit energy, channel capacity, discrete-time Gaussian channel, flash-signaling input distribution, Gaussian channel, Gaussian channels, low signal-to-noise ratio (SNR), quantisation (signal), quantization, Rayleigh channels, Rayleigh-fading channel, signal-to-noise ratio, SNR, spectral efficiency @article{Koch2013, title = {At Low SNR, Asymmetric Quantizers are Better}, author = {Tobias Koch and Amos Lapidoth}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6545291}, issn = {0018-9448}, year = {2013}, date = {2013-01-01}, journal = {IEEE Transactions on Information Theory}, volume = {59}, number = {9}, pages = {5421--5445}, abstract = {We study the capacity of the discrete-time Gaussian channel when its output is quantized with a 1-bit quantizer. We focus on the low signal-to-noise ratio (SNR) regime, where communication at very low spectral efficiencies takes place. In this regime, a symmetric threshold quantizer is known to reduce channel capacity by a factor of 2/$pi$, i.e., to cause an asymptotic power loss of approximately 2 dB. Here, it is shown that this power loss can be avoided by using asymmetric threshold quantizers and asymmetric signaling constellations. To avoid this power loss, flash-signaling input distributions are essential. Consequently, 1-bit output quantization of the Gaussian channel reduces spectral efficiency. Threshold quantizers are not only asymptotically optimal: at every fixed SNR, a threshold quantizer maximizes capacity among all 1-bit output quantizers. The picture changes on the Rayleigh-fading channel. In the noncoherent case, a 1-bit output quantizer causes an unavoidable low-SNR asymptotic power loss. In the coherent case, however, this power loss is avoidable provided that we allow the quantizer to depend on the fading level.}, keywords = {1-bit quantizer, asymmetric signaling constellation, asymmetric threshold quantizers, asymptotic power loss, Capacity per unit energy, channel capacity, discrete-time Gaussian channel, flash-signaling input distribution, Gaussian channel, Gaussian channels, low signal-to-noise ratio (SNR), quantisation (signal), quantization, Rayleigh channels, Rayleigh-fading channel, signal-to-noise ratio, SNR, spectral efficiency}, pubstate = {published}, tppubtype = {article} } We study the capacity of the discrete-time Gaussian channel when its output is quantized with a 1-bit quantizer. We focus on the low signal-to-noise ratio (SNR) regime, where communication at very low spectral efficiencies takes place. In this regime, a symmetric threshold quantizer is known to reduce channel capacity by a factor of 2/$pi$, i.e., to cause an asymptotic power loss of approximately 2 dB. Here, it is shown that this power loss can be avoided by using asymmetric threshold quantizers and asymmetric signaling constellations. To avoid this power loss, flash-signaling input distributions are essential. Consequently, 1-bit output quantization of the Gaussian channel reduces spectral efficiency. Threshold quantizers are not only asymptotically optimal: at every fixed SNR, a threshold quantizer maximizes capacity among all 1-bit output quantizers. The picture changes on the Rayleigh-fading channel. In the noncoherent case, a 1-bit output quantizer causes an unavoidable low-SNR asymptotic power loss. In the coherent case, however, this power loss is avoidable provided that we allow the quantizer to depend on the fading level. |

Koch, Tobias; Kramer, Gerhard On Noncoherent Fading Relay Channels at High Signal-to-Noise Ratio Journal Article IEEE Transactions on Information Theory, 59 (4), pp. 2221–2241, 2013, ISSN: 0018-9448. Abstract | Links | BibTeX | Tags: channel capacity, Channel models, Fading, fading channels, MIMO communication, multiple-input single-output fading channel statis, noncoherent, noncoherent fading relay channel capacity, radio receiver, radio receivers, radio transmitter, radio transmitters, Receivers, relay channels, relay networks (telecommunication), Relays, Signal to noise ratio, signal-to-noise ratio, SNR, statistics, time selective, Transmitters, Upper bound @article{Koch2013a, title = {On Noncoherent Fading Relay Channels at High Signal-to-Noise Ratio}, author = {Tobias Koch and Gerhard Kramer}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6378474}, issn = {0018-9448}, year = {2013}, date = {2013-01-01}, journal = {IEEE Transactions on Information Theory}, volume = {59}, number = {4}, pages = {2221--2241}, abstract = {The capacity of noncoherent regular-fading relay channels is studied where all terminals are aware of the fading statistics but not of their realizations. It is shown that if the fading coefficient of the channel between the transmitter and the receiver can be predicted more accurately from its infinite past than the fading coefficient of the channel between the relay and the receiver, then at high signal-to-noise ratio (SNR), the relay does not increase capacity. It is further shown that if the fading coefficient of the channel between the transmitter and the relay can be predicted more accurately from its infinite past than the fading coefficient of the channel between the relay and the receiver, then at high SNR, one can achieve communication rates that are within one bit of the capacity of the multiple-input single-output fading channel that results when the transmitter and the relay can cooperate.}, keywords = {channel capacity, Channel models, Fading, fading channels, MIMO communication, multiple-input single-output fading channel statis, noncoherent, noncoherent fading relay channel capacity, radio receiver, radio receivers, radio transmitter, radio transmitters, Receivers, relay channels, relay networks (telecommunication), Relays, Signal to noise ratio, signal-to-noise ratio, SNR, statistics, time selective, Transmitters, Upper bound}, pubstate = {published}, tppubtype = {article} } The capacity of noncoherent regular-fading relay channels is studied where all terminals are aware of the fading statistics but not of their realizations. It is shown that if the fading coefficient of the channel between the transmitter and the receiver can be predicted more accurately from its infinite past than the fading coefficient of the channel between the relay and the receiver, then at high signal-to-noise ratio (SNR), the relay does not increase capacity. It is further shown that if the fading coefficient of the channel between the transmitter and the relay can be predicted more accurately from its infinite past than the fading coefficient of the channel between the relay and the receiver, then at high SNR, one can achieve communication rates that are within one bit of the capacity of the multiple-input single-output fading channel that results when the transmitter and the relay can cooperate. |

## 2011 |

Koch, Tobias; Lapidoth, Amos Asymmetric Quantizers are Better at Low SNR Inproceedings 2011 IEEE International Symposium on Information Theory Proceedings, pp. 2592–2596, IEEE, St. Petersburg, 2011, ISSN: 2157-8095. Abstract | Links | BibTeX | Tags: asymmetric one-bit quantizer, asymmetric signal constellations, channel capacity, Channel Coding, Constellation diagram, Decoding, discrete-time average-power-limited Gaussian chann, Gaussian channels, quantization, Signal to noise ratio, signal-to-noise ratio, SNR, spread spectrum communication, spread-spectrum communications, ultra wideband communication, ultrawideband communications, Upper bound @inproceedings{Koch2011, title = {Asymmetric Quantizers are Better at Low SNR}, author = {Tobias Koch and Amos Lapidoth}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6034037}, issn = {2157-8095}, year = {2011}, date = {2011-01-01}, booktitle = {2011 IEEE International Symposium on Information Theory Proceedings}, pages = {2592--2596}, publisher = {IEEE}, address = {St. Petersburg}, abstract = {We study the behavior of channel capacity when a one-bit quantizer is employed at the output of the discrete-time average-power-limited Gaussian channel. We focus on the low signal-to-noise ratio regime, where communication at very low spectral efficiencies takes place, as in Spread-Spectrum and Ultra-Wideband communications. It is well known that, in this regime, a symmetric one-bit quantizer reduces capacity by 2/$pi$, which translates to a power loss of approximately two decibels. Here we show that if an asymmetric one-bit quantizer is employed, and if asymmetric signal constellations are used, then these two decibels can be recovered in full.}, keywords = {asymmetric one-bit quantizer, asymmetric signal constellations, channel capacity, Channel Coding, Constellation diagram, Decoding, discrete-time average-power-limited Gaussian chann, Gaussian channels, quantization, Signal to noise ratio, signal-to-noise ratio, SNR, spread spectrum communication, spread-spectrum communications, ultra wideband communication, ultrawideband communications, Upper bound}, pubstate = {published}, tppubtype = {inproceedings} } We study the behavior of channel capacity when a one-bit quantizer is employed at the output of the discrete-time average-power-limited Gaussian channel. We focus on the low signal-to-noise ratio regime, where communication at very low spectral efficiencies takes place, as in Spread-Spectrum and Ultra-Wideband communications. It is well known that, in this regime, a symmetric one-bit quantizer reduces capacity by 2/$pi$, which translates to a power loss of approximately two decibels. Here we show that if an asymmetric one-bit quantizer is employed, and if asymmetric signal constellations are used, then these two decibels can be recovered in full. |

Asyhari, Taufiq A; Koch, Tobias; i Fàbregas, Albert Guillén Nearest Neighbour Decoding and Pilot-Aided Channel Estimation in Stationary Gaussian Flat-Fading Channels Inproceedings 2011 IEEE International Symposium on Information Theory Proceedings, pp. 2786–2790, IEEE, St. Petersburg, 2011, ISSN: 2157-8095. Abstract | Links | BibTeX | Tags: Channel estimation, Decoding, Fading, fading channels, Gaussian channels, MIMO, MIMO communication, MISO, multiple-input multiple-output, nearest neighbour decoding, noncoherent multiple-input single-output, pilot-aided channel estimation, Receiving antennas, Signal to noise ratio, signal-to-noise ratio, SNR, stationary Gaussian flat-fading channels, Wireless communication @inproceedings{Asyhari2011, title = {Nearest Neighbour Decoding and Pilot-Aided Channel Estimation in Stationary Gaussian Flat-Fading Channels}, author = {Taufiq A Asyhari and Tobias Koch and Albert Guillén i Fàbregas}, url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6034081}, issn = {2157-8095}, year = {2011}, date = {2011-01-01}, booktitle = {2011 IEEE International Symposium on Information Theory Proceedings}, pages = {2786--2790}, publisher = {IEEE}, address = {St. Petersburg}, abstract = {We study the information rates of non-coherent, stationary, Gaussian, multiple-input multiple-output (MIMO) flat-fading channels that are achievable with nearest neighbour decoding and pilot-aided channel estimation. In particular, we analyse the behaviour of these achievable rates in the limit as the signal-to-noise ratio (SNR) tends to infinity. We demonstrate that nearest neighbour decoding and pilot-aided channel estimation achieves the capacity pre-log-which is defined as the limiting ratio of the capacity to the logarithm of SNR as the SNR tends to infinity-of non-coherent multiple-input single-output (MISO) flat-fading channels, and it achieves the best so far known lower bound on the capacity pre-log of non-coherent MIMO flat-fading channels.}, keywords = {Channel estimation, Decoding, Fading, fading channels, Gaussian channels, MIMO, MIMO communication, MISO, multiple-input multiple-output, nearest neighbour decoding, noncoherent multiple-input single-output, pilot-aided channel estimation, Receiving antennas, Signal to noise ratio, signal-to-noise ratio, SNR, stationary Gaussian flat-fading channels, Wireless communication}, pubstate = {published}, tppubtype = {inproceedings} } We study the information rates of non-coherent, stationary, Gaussian, multiple-input multiple-output (MIMO) flat-fading channels that are achievable with nearest neighbour decoding and pilot-aided channel estimation. In particular, we analyse the behaviour of these achievable rates in the limit as the signal-to-noise ratio (SNR) tends to infinity. We demonstrate that nearest neighbour decoding and pilot-aided channel estimation achieves the capacity pre-log-which is defined as the limiting ratio of the capacity to the logarithm of SNR as the SNR tends to infinity-of non-coherent multiple-input single-output (MISO) flat-fading channels, and it achieves the best so far known lower bound on the capacity pre-log of non-coherent MIMO flat-fading channels. |

## 2008 |

Koch, Tobias; Lapidoth, Amos On Multipath Fading Channels at High SNR Inproceedings 2008 IEEE International Symposium on Information Theory, pp. 1572–1576, IEEE, Toronto, 2008, ISBN: 978-1-4244-2256-2. Abstract | Links | BibTeX | Tags: channel capacity, Delay, discrete time systems, discrete-time channels, Entropy, Fading, fading channels, Frequency, Mathematical model, multipath channels, multipath fading channels, noncoherent channel model, Random variables, Signal to noise ratio, signal-to-noise ratios, SNR, statistics, Transmitters @inproceedings{Koch2008, title = {On Multipath Fading Channels at High SNR}, author = {Tobias Koch and Amos Lapidoth}, url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4595252}, isbn = {978-1-4244-2256-2}, year = {2008}, date = {2008-01-01}, booktitle = {2008 IEEE International Symposium on Information Theory}, pages = {1572--1576}, publisher = {IEEE}, address = {Toronto}, abstract = {This paper studies the capacity of discrete-time multipath fading channels. It is assumed that the number of paths is finite, i.e., that the channel output is influenced by the present and by the L previous channel inputs. A noncoherent channel model is considered where neither transmitter nor receiver are cognizant of the fading's realization, but both are aware of its statistic. The focus is on capacity at high signal-to-noise ratios (SNR). In particular, the capacity pre-loglog-defined as the limiting ratio of the capacity to loglog(SNR) as SNR tends to infinity-is studied. It is shown that, irrespective of the number of paths L, the capacity pre-loglog is 1.}, keywords = {channel capacity, Delay, discrete time systems, discrete-time channels, Entropy, Fading, fading channels, Frequency, Mathematical model, multipath channels, multipath fading channels, noncoherent channel model, Random variables, Signal to noise ratio, signal-to-noise ratios, SNR, statistics, Transmitters}, pubstate = {published}, tppubtype = {inproceedings} } This paper studies the capacity of discrete-time multipath fading channels. It is assumed that the number of paths is finite, i.e., that the channel output is influenced by the present and by the L previous channel inputs. A noncoherent channel model is considered where neither transmitter nor receiver are cognizant of the fading's realization, but both are aware of its statistic. The focus is on capacity at high signal-to-noise ratios (SNR). In particular, the capacity pre-loglog-defined as the limiting ratio of the capacity to loglog(SNR) as SNR tends to infinity-is studied. It is shown that, irrespective of the number of paths L, the capacity pre-loglog is 1. |