### 2008

Koch, Tobias; Lapidoth, Amos

On Multipath Fading Channels at High SNR Artículo en actas

En: 2008 IEEE International Symposium on Information Theory, pp. 1572–1576, IEEE, Toronto, 2008, ISBN: 978-1-4244-2256-2.

Resumen | Enlaces | BibTeX | Etiquetas: channel capacity, Delay, discrete time systems, discrete-time channels, Entropy, Fading, fading channels, Frequency, Mathematical model, multipath channels, multipath fading channels, noncoherent channel model, Random variables, Signal to noise ratio, signal-to-noise ratios, SNR, statistics, Transmitters

@inproceedings{Koch2008,

title = {On Multipath Fading Channels at High SNR},

author = {Tobias Koch and Amos Lapidoth},

url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4595252},

isbn = {978-1-4244-2256-2},

year = {2008},

date = {2008-01-01},

booktitle = {2008 IEEE International Symposium on Information Theory},

pages = {1572--1576},

publisher = {IEEE},

address = {Toronto},

abstract = {This paper studies the capacity of discrete-time multipath fading channels. It is assumed that the number of paths is finite, i.e., that the channel output is influenced by the present and by the L previous channel inputs. A noncoherent channel model is considered where neither transmitter nor receiver are cognizant of the fading's realization, but both are aware of its statistic. The focus is on capacity at high signal-to-noise ratios (SNR). In particular, the capacity pre-loglog-defined as the limiting ratio of the capacity to loglog(SNR) as SNR tends to infinity-is studied. It is shown that, irrespective of the number of paths L, the capacity pre-loglog is 1.},

keywords = {channel capacity, Delay, discrete time systems, discrete-time channels, Entropy, Fading, fading channels, Frequency, Mathematical model, multipath channels, multipath fading channels, noncoherent channel model, Random variables, Signal to noise ratio, signal-to-noise ratios, SNR, statistics, Transmitters},

pubstate = {published},

tppubtype = {inproceedings}

}

Vazquez, Manuel A; Miguez, Joaquin

A Per-Survivor Processing Algorithm for Maximum Likelihood Equalization of MIMO Channels with Unknown Order Artículo en actas

En: 2008 International ITG Workshop on Smart Antennas, pp. 387–391, IEEE, Vienna, 2008, ISBN: 978-1-4244-1756-8.

Resumen | Enlaces | BibTeX | Etiquetas: Channel estimation, channel impulse response, computational complexity, Computer science education, Computer Simulation, Degradation, Frequency, frequency-selective multiple-input multiple-output, maximum likelihood detection, maximum likelihood equalization, maximum likelihood estimation, maximum likelihood sequence detection, maximum likelihood sequence estimation, MIMO, MIMO channels, MIMO communication, per-survivor processing algorithm, time-selective channels, Transmitting antennas

@inproceedings{Vazquez2008,

title = {A Per-Survivor Processing Algorithm for Maximum Likelihood Equalization of MIMO Channels with Unknown Order},

author = {Manuel A Vazquez and Joaquin Miguez},

url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4475587},

isbn = {978-1-4244-1756-8},

year = {2008},

date = {2008-01-01},

booktitle = {2008 International ITG Workshop on Smart Antennas},

pages = {387--391},

publisher = {IEEE},

address = {Vienna},

abstract = {In the equalization of frequency-selective multiple-input multiple-output (MIMO) channels it is usually assumed that the length of the channel impulse response (CIR), also referred to as the channel order, is known. However, this is not true in most practical situations and, in order to avoid the serious performance degradation that occurs when the CIR length is underestimated, a channel with "more than enough" taps is usually considered. This possibly means overestimating the channel order, and is not desirable since the computational complexity of maximum likelihood sequence detection (MLSD) in frequency-selective channels grows exponentially with the channel order. In addition to that, the higher the channel order considered, the more the number of channel coefficients that need to be estimated from the same set of observations. In this paper, we introduce an algorithm for MLSD that incorporates the full estimation of the MIMO CIR parameters, including its order. The proposed technique is based on the per survivor processing (PSP) methodology, it admits both blind and semiblind implementations, depending on the availability of pilot data, and is designed to work with time-selective channels. Besides the analytical derivation of the algorithm, we provide computer simulation results that illustrate the effectiveness of the resulting receiver},

keywords = {Channel estimation, channel impulse response, computational complexity, Computer science education, Computer Simulation, Degradation, Frequency, frequency-selective multiple-input multiple-output, maximum likelihood detection, maximum likelihood equalization, maximum likelihood estimation, maximum likelihood sequence detection, maximum likelihood sequence estimation, MIMO, MIMO channels, MIMO communication, per-survivor processing algorithm, time-selective channels, Transmitting antennas},

pubstate = {published},

tppubtype = {inproceedings}

}

Koch, Tobias; Lapidoth, Amos

Multipath Channels of Unbounded Capacity Artículo en actas

En: 2008 IEEE 25th Convention of Electrical and Electronics Engineers in Israel, pp. 640–644, IEEE, Eilat, 2008, ISBN: 978-1-4244-2481-8.

Resumen | Enlaces | BibTeX | Etiquetas: channel capacity, discrete-time capacity, Entropy, Fading, fading channels, Frequency, H infinity control, Information rates, multipath channels, multipath fading channels, noncoherent, noncoherent capacity, path gains decay, Signal to noise ratio, statistics, Transmitters, unbounded capacity

@inproceedings{Koch2008b,

title = {Multipath Channels of Unbounded Capacity},

author = {Tobias Koch and Amos Lapidoth},

url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4736611},

isbn = {978-1-4244-2481-8},

year = {2008},

date = {2008-01-01},

booktitle = {2008 IEEE 25th Convention of Electrical and Electronics Engineers in Israel},

pages = {640--644},

publisher = {IEEE},

address = {Eilat},

abstract = {The capacity of discrete-time, noncoherent, multipath fading channels is considered. It is shown that if the variances of the path gains decay faster than exponentially, then capacity is unbounded in the transmit power.},

keywords = {channel capacity, discrete-time capacity, Entropy, Fading, fading channels, Frequency, H infinity control, Information rates, multipath channels, multipath fading channels, noncoherent, noncoherent capacity, path gains decay, Signal to noise ratio, statistics, Transmitters, unbounded capacity},

pubstate = {published},

tppubtype = {inproceedings}

}

Vazquez, Manuel A; Miguez, Joaquin

A Per-Survivor Processing Algorithm for Maximum Likelihood Equalization of MIMO Channels with Unknown Order Artículo en actas

En: 2008 International ITG Workshop on Smart Antennas, pp. 387–391, IEEE, Vienna, 2008, ISBN: 978-1-4244-1756-8.

Resumen | Enlaces | BibTeX | Etiquetas: Channel estimation, channel impulse response, computational complexity, Computer science education, Computer Simulation, Degradation, Frequency, frequency-selective multiple-input multiple-output, maximum likelihood detection, maximum likelihood equalization, maximum likelihood estimation, maximum likelihood sequence detection, maximum likelihood sequence estimation, MIMO, MIMO channels, MIMO communication, per-survivor processing algorithm, time-selective channels, Transmitting antennas

@inproceedings{Vazquez2008a,

title = {A Per-Survivor Processing Algorithm for Maximum Likelihood Equalization of MIMO Channels with Unknown Order},

author = {Manuel A Vazquez and Joaquin Miguez},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4475587},

isbn = {978-1-4244-1756-8},

year = {2008},

date = {2008-01-01},

booktitle = {2008 International ITG Workshop on Smart Antennas},

pages = {387--391},

publisher = {IEEE},

address = {Vienna},

abstract = {In the equalization of frequency-selective multiple-input multiple-output (MIMO) channels it is usually assumed that the length of the channel impulse response (CIR), also referred to as the channel order, is known. However, this is not true in most practical situations and, in order to avoid the serious performance degradation that occurs when the CIR length is underestimated, a channel with "more than enough" taps is usually considered. This possibly means overestimating the channel order, and is not desirable since the computational complexity of maximum likelihood sequence detection (MLSD) in frequency-selective channels grows exponentially with the channel order. In addition to that, the higher the channel order considered, the more the number of channel coefficients that need to be estimated from the same set of observations. In this paper, we introduce an algorithm for MLSD that incorporates the full estimation of the MIMO CIR parameters, including its order. The proposed technique is based on the per survivor processing (PSP) methodology, it admits both blind and semiblind implementations, depending on the availability of pilot data, and is designed to work with time-selective channels. Besides the analytical derivation of the algorithm, we provide computer simulation results that illustrate the effectiveness of the resulting receiver.},

keywords = {Channel estimation, channel impulse response, computational complexity, Computer science education, Computer Simulation, Degradation, Frequency, frequency-selective multiple-input multiple-output, maximum likelihood detection, maximum likelihood equalization, maximum likelihood estimation, maximum likelihood sequence detection, maximum likelihood sequence estimation, MIMO, MIMO channels, MIMO communication, per-survivor processing algorithm, time-selective channels, Transmitting antennas},

pubstate = {published},

tppubtype = {inproceedings}

}