2015
Martino, Luca; Elvira, Victor; Luengo, David; Artés-Rodríguez, Antonio; Corander, Jukka
Smelly Parallel MCMC Chains Proceedings Article
En: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4070–4074, IEEE, Brisbane, 2015, ISBN: 978-1-4673-6997-8.
Resumen | Enlaces | BibTeX | Etiquetas: Bayesian inference, learning (artificial intelligence), Machine learning, Markov chain Monte Carlo, Markov chain Monte Carlo algorithms, Markov processes, MC methods, MCMC algorithms, MCMC scheme, mean square error, mean square error methods, Monte Carlo methods, optimisation, parallel and interacting chains, Probability density function, Proposals, robustness, Sampling methods, Signal processing, Signal processing algorithms, signal sampling, smelly parallel chains, smelly parallel MCMC chains, Stochastic optimization
@inproceedings{Martino2015a,
title = {Smelly Parallel MCMC Chains},
author = {Luca Martino and Victor Elvira and David Luengo and Antonio Art\'{e}s-Rodr\'{i}guez and Jukka Corander},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7178736 http://www.tsc.uc3m.es/~velvira/papers/ICASSP2015_martino.pdf},
doi = {10.1109/ICASSP.2015.7178736},
isbn = {978-1-4673-6997-8},
year = {2015},
date = {2015-04-01},
booktitle = {2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages = {4070--4074},
publisher = {IEEE},
address = {Brisbane},
abstract = {Monte Carlo (MC) methods are useful tools for Bayesian inference and stochastic optimization that have been widely applied in signal processing and machine learning. A well-known class of MC methods are Markov Chain Monte Carlo (MCMC) algorithms. In this work, we introduce a novel parallel interacting MCMC scheme, where the parallel chains share information, thus yielding a faster exploration of the state space. The interaction is carried out generating a dynamic repulsion among the “smelly” parallel chains that takes into account the entire population of current states. The ergodicity of the scheme and its relationship with other sampling methods are discussed. Numerical results show the advantages of the proposed approach in terms of mean square error, robustness w.r.t. to initial values and parameter choice.},
keywords = {Bayesian inference, learning (artificial intelligence), Machine learning, Markov chain Monte Carlo, Markov chain Monte Carlo algorithms, Markov processes, MC methods, MCMC algorithms, MCMC scheme, mean square error, mean square error methods, Monte Carlo methods, optimisation, parallel and interacting chains, Probability density function, Proposals, robustness, Sampling methods, Signal processing, Signal processing algorithms, signal sampling, smelly parallel chains, smelly parallel MCMC chains, Stochastic optimization},
pubstate = {published},
tppubtype = {inproceedings}
}
2011
Plata-Chaves, Jorge; Lazaro, Marcelino; Artés-Rodríguez, Antonio
Optimal Neyman-Pearson Fusion in Two-Dimensional Densor Networks with Serial Architecture and Dependent Observations Proceedings Article
En: Information Fusion (FUSION), 2011 Proceedings of the 14th International Conference on, pp. 1–6, Chicago, 2011, ISBN: 978-1-4577-0267-9.
Resumen | Enlaces | BibTeX | Etiquetas: Bayesian methods, binary distributed detection problem, decision theory, dependent observations, Joints, local decision rule, Measurement uncertainty, Network topology, Neyman-Pearson criterion, optimal Neyman-Pearson fusion, optimum distributed detection, Parallel architectures, Performance evaluation, Probability density function, sensor dependent observations, sensor fusion, serial architecture, serial network topology, two-dimensional sensor networks, Wireless Sensor Networks
@inproceedings{Plata-Chaves2011bb,
title = {Optimal Neyman-Pearson Fusion in Two-Dimensional Densor Networks with Serial Architecture and Dependent Observations},
author = {Jorge Plata-Chaves and Marcelino Lazaro and Antonio Art\'{e}s-Rodr\'{i}guez},
url = {http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5977545\&searchWithin%3Dartes+rodriguez%26sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A5977431%29},
isbn = {978-1-4577-0267-9},
year = {2011},
date = {2011-01-01},
booktitle = {Information Fusion (FUSION), 2011 Proceedings of the 14th International Conference on},
pages = {1--6},
address = {Chicago},
abstract = {In this correspondence, we consider a sensor network with serial architecture. When solving a binary distributed detection problem where the sensor observations are dependent under each one of the two possible hypothesis, each fusion stage of the network applies a local decision rule. We assume that, based on the information available at each fusion stage, the decision rules provide a binary message regarding the presence or absence of an event of interest. Under this scenario and under a Neyman-Pearson formulation, we derive the optimal decision rules associated with each fusion stage. As it happens when the sensor observations are independent, we are able to show that, under the Neyman-Pearson criterion, the optimal fusion rules of a serial configuration with dependent observations also match optimal Neyman-Pearson tests.},
keywords = {Bayesian methods, binary distributed detection problem, decision theory, dependent observations, Joints, local decision rule, Measurement uncertainty, Network topology, Neyman-Pearson criterion, optimal Neyman-Pearson fusion, optimum distributed detection, Parallel architectures, Performance evaluation, Probability density function, sensor dependent observations, sensor fusion, serial architecture, serial network topology, two-dimensional sensor networks, Wireless Sensor Networks},
pubstate = {published},
tppubtype = {inproceedings}
}