2015
Martino, Luca; Elvira, Victor; Luengo, David; Artés-Rodríguez, Antonio; Corander, Jukka
Smelly Parallel MCMC Chains Proceedings Article
En: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4070–4074, IEEE, Brisbane, 2015, ISBN: 978-1-4673-6997-8.
Resumen | Enlaces | BibTeX | Etiquetas: Bayesian inference, learning (artificial intelligence), Machine learning, Markov chain Monte Carlo, Markov chain Monte Carlo algorithms, Markov processes, MC methods, MCMC algorithms, MCMC scheme, mean square error, mean square error methods, Monte Carlo methods, optimisation, parallel and interacting chains, Probability density function, Proposals, robustness, Sampling methods, Signal processing, Signal processing algorithms, signal sampling, smelly parallel chains, smelly parallel MCMC chains, Stochastic optimization
@inproceedings{Martino2015a,
title = {Smelly Parallel MCMC Chains},
author = {Luca Martino and Victor Elvira and David Luengo and Antonio Art\'{e}s-Rodr\'{i}guez and Jukka Corander},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7178736 http://www.tsc.uc3m.es/~velvira/papers/ICASSP2015_martino.pdf},
doi = {10.1109/ICASSP.2015.7178736},
isbn = {978-1-4673-6997-8},
year = {2015},
date = {2015-04-01},
booktitle = {2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages = {4070--4074},
publisher = {IEEE},
address = {Brisbane},
abstract = {Monte Carlo (MC) methods are useful tools for Bayesian inference and stochastic optimization that have been widely applied in signal processing and machine learning. A well-known class of MC methods are Markov Chain Monte Carlo (MCMC) algorithms. In this work, we introduce a novel parallel interacting MCMC scheme, where the parallel chains share information, thus yielding a faster exploration of the state space. The interaction is carried out generating a dynamic repulsion among the “smelly” parallel chains that takes into account the entire population of current states. The ergodicity of the scheme and its relationship with other sampling methods are discussed. Numerical results show the advantages of the proposed approach in terms of mean square error, robustness w.r.t. to initial values and parameter choice.},
keywords = {Bayesian inference, learning (artificial intelligence), Machine learning, Markov chain Monte Carlo, Markov chain Monte Carlo algorithms, Markov processes, MC methods, MCMC algorithms, MCMC scheme, mean square error, mean square error methods, Monte Carlo methods, optimisation, parallel and interacting chains, Probability density function, Proposals, robustness, Sampling methods, Signal processing, Signal processing algorithms, signal sampling, smelly parallel chains, smelly parallel MCMC chains, Stochastic optimization},
pubstate = {published},
tppubtype = {inproceedings}
}
2013
Luengo, David; Via, Javier; Monzon, Sandra; Trigano, Tom; Artés-Rodríguez, Antonio
Cross-Products LASSO Proceedings Article
En: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6118–6122, IEEE, Vancouver, 2013, ISSN: 1520-6149.
Resumen | Enlaces | BibTeX | Etiquetas: Approximation methods, approximation theory, concave programming, convex programming, Cost function, cross-product LASSO cost function, Dictionaries, dictionary, Encoding, LASSO, learning (artificial intelligence), negative co-occurrence, negative cooccurrence phenomenon, nonconvex optimization problem, Signal processing, signal processing application, signal reconstruction, sparse coding, sparse learning approach, Sparse matrices, sparsity-aware learning, successive convex approximation, Vectors
@inproceedings{Luengo2013,
title = {Cross-Products LASSO},
author = {David Luengo and Javier Via and Sandra Monzon and Tom Trigano and Antonio Art\'{e}s-Rodr\'{i}guez},
url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6638840},
issn = {1520-6149},
year = {2013},
date = {2013-01-01},
booktitle = {2013 IEEE International Conference on Acoustics, Speech and Signal Processing},
pages = {6118--6122},
publisher = {IEEE},
address = {Vancouver},
abstract = {Negative co-occurrence is a common phenomenon in many signal processing applications. In some cases the signals involved are sparse, and this information can be exploited to recover them. In this paper, we present a sparse learning approach that explicitly takes into account negative co-occurrence. This is achieved by adding a novel penalty term to the LASSO cost function based on the cross-products between the reconstruction coefficients. Although the resulting optimization problem is non-convex, we develop a new and efficient method for solving it based on successive convex approximations. Results on synthetic data, for both complete and overcomplete dictionaries, are provided to validate the proposed approach.},
keywords = {Approximation methods, approximation theory, concave programming, convex programming, Cost function, cross-product LASSO cost function, Dictionaries, dictionary, Encoding, LASSO, learning (artificial intelligence), negative co-occurrence, negative cooccurrence phenomenon, nonconvex optimization problem, Signal processing, signal processing application, signal reconstruction, sparse coding, sparse learning approach, Sparse matrices, sparsity-aware learning, successive convex approximation, Vectors},
pubstate = {published},
tppubtype = {inproceedings}
}
2009
Vinuelas-Peris, Pablo; Artés-Rodríguez, Antonio
Sensing Matrix Optimization in Distributed Compressed Sensing Proceedings Article
En: 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, pp. 638–641, IEEE, Cardiff, 2009, ISBN: 978-1-4244-2709-3.
Resumen | Enlaces | BibTeX | Etiquetas: Compressed sensing, Computer Simulation, computer simulations, correlated signal, Correlated signals, correlation theory, Dictionaries, distributed coding strategy, distributed compressed sensing, Distributed control, efficient projection method, Encoding, joint recovery method, Matching pursuit algorithms, Optimization methods, orthogonal matching pursuit, Projection Matrix Optimization, sensing matrix optimization, Sensor Network, Sensor phenomena and characterization, Sensor systems, Signal processing, Sparse matrices, Technological innovation
@inproceedings{Vinuelas-Peris2009,
title = {Sensing Matrix Optimization in Distributed Compressed Sensing},
author = {Pablo Vinuelas-Peris and Antonio Art\'{e}s-Rodr\'{i}guez},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5278496},
isbn = {978-1-4244-2709-3},
year = {2009},
date = {2009-01-01},
booktitle = {2009 IEEE/SP 15th Workshop on Statistical Signal Processing},
pages = {638--641},
publisher = {IEEE},
address = {Cardiff},
abstract = {Distributed compressed sensing (DCS) seeks to simultaneously measure signals that are each individually sparse in some domain(s) and also mutually correlated. In this paper we consider the scenario in which the (overcomplete) bases for common component and innovations are different. We propose and analyze a distributed coding strategy for the common component, and also the use of efficient projection (EP) method for optimizing the sensing matrices in this setting. We show the effectiveness of our approach by computer simulations using the orthogonal matching pursuit (OMP) as joint recovery method, and we discuss the configuration of the distribution strategy.},
keywords = {Compressed sensing, Computer Simulation, computer simulations, correlated signal, Correlated signals, correlation theory, Dictionaries, distributed coding strategy, distributed compressed sensing, Distributed control, efficient projection method, Encoding, joint recovery method, Matching pursuit algorithms, Optimization methods, orthogonal matching pursuit, Projection Matrix Optimization, sensing matrix optimization, Sensor Network, Sensor phenomena and characterization, Sensor systems, Signal processing, Sparse matrices, Technological innovation},
pubstate = {published},
tppubtype = {inproceedings}
}
2008
Santiago-Mozos, Ricardo; Fernandez-Lorenzana, R; Perez-Cruz, Fernando; Artés-Rodríguez, Antonio
On the Uncertainty in Sequential Hypothesis Testing Proceedings Article
En: 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1223–1226, IEEE, Paris, 2008, ISBN: 978-1-4244-2002-5.
Resumen | Enlaces | BibTeX | Etiquetas: binary hypothesis test, Biomedical imaging, Detectors, H infinity control, likelihood ratio, Medical diagnostic imaging, medical image application, medical image processing, Medical tests, patient diagnosis, Probability, Random variables, Sequential analysis, sequential hypothesis testing, sequential probability ratio test, Signal processing, Testing, tuberculosis diagnosis, Uncertainty
@inproceedings{Santiago-Mozos2008,
title = {On the Uncertainty in Sequential Hypothesis Testing},
author = {Ricardo Santiago-Mozos and R Fernandez-Lorenzana and Fernando Perez-Cruz and Antonio Art\'{e}s-Rodr\'{i}guez},
url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4541223},
isbn = {978-1-4244-2002-5},
year = {2008},
date = {2008-01-01},
booktitle = {2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro},
pages = {1223--1226},
publisher = {IEEE},
address = {Paris},
abstract = {We consider the problem of sequential hypothesis testing when the exact pdfs are not known but instead a set of iid samples are used to describe the hypotheses. We modify the classical test by introducing a likelihood ratio interval which accommodates the uncertainty in the pdfs. The test finishes when the whole likelihood ratio interval crosses one of the thresholds and reduces to the classical test as the number of samples to describe the hypotheses tend to infinity. We illustrate the performance of this test in a medical image application related to tuberculosis diagnosis. We show in this example how the test confidence level can be accurately determined.},
keywords = {binary hypothesis test, Biomedical imaging, Detectors, H infinity control, likelihood ratio, Medical diagnostic imaging, medical image application, medical image processing, Medical tests, patient diagnosis, Probability, Random variables, Sequential analysis, sequential hypothesis testing, sequential probability ratio test, Signal processing, Testing, tuberculosis diagnosis, Uncertainty},
pubstate = {published},
tppubtype = {inproceedings}
}
Vila-Forcen, J E; Artés-Rodríguez, Antonio; Garcia-Frias, J
Compressive Sensing Detection of Stochastic Signals Proceedings Article
En: 2008 42nd Annual Conference on Information Sciences and Systems, pp. 956–960, IEEE, Princeton, 2008, ISBN: 978-1-4244-2246-3.
Resumen | Enlaces | BibTeX | Etiquetas: Additive white noise, AWGN, compressive sensing detection, dimensionality reduction techniques, Distortion measurement, Gaussian noise, matrix algebra, Mutual information, optimized projections, projection matrix, signal detection, Signal processing, signal reconstruction, Stochastic processes, stochastic signals, Support vector machine classification, Support vector machines, SVM
@inproceedings{Vila-Forcen2008,
title = {Compressive Sensing Detection of Stochastic Signals},
author = {J E Vila-Forcen and Antonio Art\'{e}s-Rodr\'{i}guez and J Garcia-Frias},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4558656},
isbn = {978-1-4244-2246-3},
year = {2008},
date = {2008-01-01},
booktitle = {2008 42nd Annual Conference on Information Sciences and Systems},
pages = {956--960},
publisher = {IEEE},
address = {Princeton},
abstract = {Inspired by recent work in compressive sensing, we propose a framework for the detection of stochastic signals from optimized projections. In order to generate a good projection matrix, we use dimensionality reduction techniques based on the maximization of the mutual information between the projected signals and their corresponding class labels. In addition, classification techniques based on support vector machines (SVMs) are applied for the final decision process. Simulation results show that the realizations of the stochastic process are detected with higher accuracy and lower complexity than a scheme performing signal reconstruction first, followed by detection based on the reconstructed signal.},
keywords = {Additive white noise, AWGN, compressive sensing detection, dimensionality reduction techniques, Distortion measurement, Gaussian noise, matrix algebra, Mutual information, optimized projections, projection matrix, signal detection, Signal processing, signal reconstruction, Stochastic processes, stochastic signals, Support vector machine classification, Support vector machines, SVM},
pubstate = {published},
tppubtype = {inproceedings}
}