2012
Taborda, Camilo G; Perez-Cruz, Fernando
Mutual Information and Relative Entropy over the Binomial and Negative Binomial Channels Artículo en actas
En: 2012 IEEE International Symposium on Information Theory Proceedings, pp. 696–700, IEEE, Cambridge, MA, 2012, ISSN: 2157-8095.
Resumen | Enlaces | BibTeX | Etiquetas: Channel estimation, conditional mean estimation, Entropy, Estimation, estimation theoretical quantity, estimation theory, Gaussian channel, Gaussian channels, information theory concept, loss function, mean square error methods, Mutual information, negative binomial channel, Poisson channel, Random variables, relative entropy
@inproceedings{Taborda2012a,
title = {Mutual Information and Relative Entropy over the Binomial and Negative Binomial Channels},
author = {Camilo G Taborda and Fernando Perez-Cruz},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6284304},
issn = {2157-8095},
year = {2012},
date = {2012-01-01},
booktitle = {2012 IEEE International Symposium on Information Theory Proceedings},
pages = {696--700},
publisher = {IEEE},
address = {Cambridge, MA},
abstract = {We study the relation of the mutual information and relative entropy over the Binomial and Negative Binomial channels with estimation theoretical quantities, in which we extend already known results for Gaussian and Poisson channels. We establish general expressions for these information theory concepts with a direct connection with estimation theory through the conditional mean estimation and a particular loss function.},
keywords = {Channel estimation, conditional mean estimation, Entropy, Estimation, estimation theoretical quantity, estimation theory, Gaussian channel, Gaussian channels, information theory concept, loss function, mean square error methods, Mutual information, negative binomial channel, Poisson channel, Random variables, relative entropy},
pubstate = {published},
tppubtype = {inproceedings}
}
We study the relation of the mutual information and relative entropy over the Binomial and Negative Binomial channels with estimation theoretical quantities, in which we extend already known results for Gaussian and Poisson channels. We establish general expressions for these information theory concepts with a direct connection with estimation theory through the conditional mean estimation and a particular loss function.