2015
Santos, Irene; Murillo-Fuentes, Juan Jose; Olmos, Pablo M
Block Expectation Propagation Equalization for ISI Channels Artículo en actas
En: 2015 23rd European Signal Processing Conference (EUSIPCO), pp. 379–383, IEEE, Nice, 2015, ISBN: 978-0-9928-6263-3.
Resumen | Enlaces | BibTeX | Etiquetas: Approximation algorithms, Approximation methods, BCJR algorithm, channel equalization, Complexity theory, Decoding, Equalizers, expectation propagation, ISI, low complexity, Signal processing algorithms
@inproceedings{Santos2015,
title = {Block Expectation Propagation Equalization for ISI Channels},
author = {Irene Santos and Juan Jose Murillo-Fuentes and Pablo M Olmos},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7362409},
doi = {10.1109/EUSIPCO.2015.7362409},
isbn = {978-0-9928-6263-3},
year = {2015},
date = {2015-08-01},
booktitle = {2015 23rd European Signal Processing Conference (EUSIPCO)},
pages = {379--383},
publisher = {IEEE},
address = {Nice},
abstract = {Actual communications systems use high-order modulations and channels with memory. However, as the memory of the channels and the order of the constellations grow, optimal equalization such as BCJR algorithm is computationally intractable, as their complexity increases exponentially with the number of taps and size of modulation. In this paper, we propose a novel low-complexity hard and soft output equalizer based on the Expectation Propagation (EP) algorithm that provides high-accuracy posterior probability estimations at the input of the channel decoder with similar computational complexity than the linear MMSE. We experimentally show that this quasi-optimal solution outperforms classical solutions reducing the bit error probability with low complexity when LDPC channel decoding is used, avoiding the curse of dimensionality with channel memory and constellation size.},
keywords = {Approximation algorithms, Approximation methods, BCJR algorithm, channel equalization, Complexity theory, Decoding, Equalizers, expectation propagation, ISI, low complexity, Signal processing algorithms},
pubstate = {published},
tppubtype = {inproceedings}
}
Actual communications systems use high-order modulations and channels with memory. However, as the memory of the channels and the order of the constellations grow, optimal equalization such as BCJR algorithm is computationally intractable, as their complexity increases exponentially with the number of taps and size of modulation. In this paper, we propose a novel low-complexity hard and soft output equalizer based on the Expectation Propagation (EP) algorithm that provides high-accuracy posterior probability estimations at the input of the channel decoder with similar computational complexity than the linear MMSE. We experimentally show that this quasi-optimal solution outperforms classical solutions reducing the bit error probability with low complexity when LDPC channel decoding is used, avoiding the curse of dimensionality with channel memory and constellation size.