2015
Luengo, David; Martino, Luca; Elvira, Victor; Bugallo, Monica F
Efficient Linear Combination of Partial Monte Carlo Estimators Artículo en actas
En: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4100–4104, IEEE, Brisbane, 2015, ISBN: 978-1-4673-6997-8.
Resumen | Enlaces | BibTeX | Etiquetas: covariance matrices, efficient linear combination, Estimation, fusion, Global estimator, global estimators, least mean squares methods, linear combination, minimum mean squared error estimators, Monte Carlo estimation, Monte Carlo methods, partial estimator, partial Monte Carlo estimators, Xenon
@inproceedings{Luengo2015bb,
title = {Efficient Linear Combination of Partial Monte Carlo Estimators},
author = {David Luengo and Luca Martino and Victor Elvira and Monica F Bugallo},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7178742 http://www.tsc.uc3m.es/~velvira/papers/ICASSP2015_luengo.pdf},
doi = {10.1109/ICASSP.2015.7178742},
isbn = {978-1-4673-6997-8},
year = {2015},
date = {2015-04-01},
booktitle = {2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages = {4100--4104},
publisher = {IEEE},
address = {Brisbane},
abstract = {In many practical scenarios, including those dealing with large data sets, calculating global estimators of unknown variables of interest becomes unfeasible. A common solution is obtaining partial estimators and combining them to approximate the global one. In this paper, we focus on minimum mean squared error (MMSE) estimators, introducing two efficient linear schemes for the fusion of partial estimators. The proposed approaches are valid for any type of partial estimators, although in the simulated scenarios we concentrate on the combination of Monte Carlo estimators due to the nature of the problem addressed. Numerical results show the good performance of the novel fusion methods with only a fraction of the cost of the asymptotically optimal solution.},
keywords = {covariance matrices, efficient linear combination, Estimation, fusion, Global estimator, global estimators, least mean squares methods, linear combination, minimum mean squared error estimators, Monte Carlo estimation, Monte Carlo methods, partial estimator, partial Monte Carlo estimators, Xenon},
pubstate = {published},
tppubtype = {inproceedings}
}
In many practical scenarios, including those dealing with large data sets, calculating global estimators of unknown variables of interest becomes unfeasible. A common solution is obtaining partial estimators and combining them to approximate the global one. In this paper, we focus on minimum mean squared error (MMSE) estimators, introducing two efficient linear schemes for the fusion of partial estimators. The proposed approaches are valid for any type of partial estimators, although in the simulated scenarios we concentrate on the combination of Monte Carlo estimators due to the nature of the problem addressed. Numerical results show the good performance of the novel fusion methods with only a fraction of the cost of the asymptotically optimal solution.