2012
Monzon, Sandra; Trigano, Tom; Luengo, David; Artés-Rodríguez, Antonio
Sparse Spectral Analysis of Atrial Fibrillation Electrograms. Artículo en actas
En: 2012 IEEE International Workshop on Machine Learning for Signal Processing, pp. 1–6, IEEE, Santander, 2012, ISSN: 1551-2541.
Resumen | Enlaces | BibTeX | Etiquetas: Algorithm design and analysis, atrial fibrillation, atrial fibrillation electrogram, biomedical signal processing, dominant frequency, Doped fiber amplifiers, electrocardiography, Harmonic analysis, Heart, heart disorder, Indexes, Mathematical model, medical signal processing, multiple foci, multiple uncoordinated activation foci, signal processing technique, sparse spectral analysis, sparsity-aware learning, sparsity-aware learning technique, spectral analysis, spike train
@inproceedings{Monzon2012,
title = {Sparse Spectral Analysis of Atrial Fibrillation Electrograms.},
author = {Sandra Monzon and Tom Trigano and David Luengo and Antonio Art\'{e}s-Rodr\'{i}guez},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6349721},
issn = {1551-2541},
year = {2012},
date = {2012-01-01},
booktitle = {2012 IEEE International Workshop on Machine Learning for Signal Processing},
pages = {1--6},
publisher = {IEEE},
address = {Santander},
abstract = {Atrial fibrillation (AF) is a common heart disorder. One of the most prominent hypothesis about its initiation and maintenance considers multiple uncoordinated activation foci inside the atrium. However, the implicit assumption behind all the signal processing techniques used for AF, such as dominant frequency and organization analysis, is the existence of a single regular component in the observed signals. In this paper we take into account the existence of multiple foci, performing a spectral analysis to detect their number and frequencies. In order to obtain a cleaner signal on which the spectral analysis can be performed, we introduce sparsity-aware learning techniques to infer the spike trains corresponding to the activations. The good performance of the proposed algorithm is demonstrated both on synthetic and real data.},
keywords = {Algorithm design and analysis, atrial fibrillation, atrial fibrillation electrogram, biomedical signal processing, dominant frequency, Doped fiber amplifiers, electrocardiography, Harmonic analysis, Heart, heart disorder, Indexes, Mathematical model, medical signal processing, multiple foci, multiple uncoordinated activation foci, signal processing technique, sparse spectral analysis, sparsity-aware learning, sparsity-aware learning technique, spectral analysis, spike train},
pubstate = {published},
tppubtype = {inproceedings}
}