2010
Fresia, Maria; Perez-Cruz, Fernando; Poor, Vincent H; Verdu, Sergio
Joint Source and Channel Coding Artículo de revista
En: IEEE Signal Processing Magazine, vol. 27, no. 6, pp. 104–113, 2010, ISSN: 1053-5888.
Resumen | Enlaces | BibTeX | Etiquetas: belief propagation, Channel Coding, combined source-channel coding, Decoding, Encoding, graphical model, Hidden Markov models, Iterative decoding, joint source channel coding, JSC coding, LDPC code, low density parity check code, Markov processes, parity check codes, Slepian-Wolf problem, variable length codes
@article{Fresia2010,
title = {Joint Source and Channel Coding},
author = {Maria Fresia and Fernando Perez-Cruz and Vincent H Poor and Sergio Verdu},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5563107},
issn = {1053-5888},
year = {2010},
date = {2010-01-01},
journal = {IEEE Signal Processing Magazine},
volume = {27},
number = {6},
pages = {104--113},
abstract = {The objectives of this article are two-fold: First, to present the problem of joint source and channel (JSC) coding from a graphical model perspective and second, to propose a structure that uses a new graphical model for jointly encoding and decoding a redundant source. In the first part of the article, relevant contributions to JSC coding, ranging from the Slepian-Wolf problem to joint decoding of variable length codes with state-of-the-art source codes, are reviewed and summarized. In the second part, a double low-density parity-check (LDPC) code for JSC coding is proposed. The double LDPC code can be decoded as a single bipartite graph using standard belief propagation (BP) and its limiting performance is analyzed by using extrinsic information transfer (EXIT) chart approximations.},
keywords = {belief propagation, Channel Coding, combined source-channel coding, Decoding, Encoding, graphical model, Hidden Markov models, Iterative decoding, joint source channel coding, JSC coding, LDPC code, low density parity check code, Markov processes, parity check codes, Slepian-Wolf problem, variable length codes},
pubstate = {published},
tppubtype = {article}
}
The objectives of this article are two-fold: First, to present the problem of joint source and channel (JSC) coding from a graphical model perspective and second, to propose a structure that uses a new graphical model for jointly encoding and decoding a redundant source. In the first part of the article, relevant contributions to JSC coding, ranging from the Slepian-Wolf problem to joint decoding of variable length codes with state-of-the-art source codes, are reviewed and summarized. In the second part, a double low-density parity-check (LDPC) code for JSC coding is proposed. The double LDPC code can be decoded as a single bipartite graph using standard belief propagation (BP) and its limiting performance is analyzed by using extrinsic information transfer (EXIT) chart approximations.