2009
Bugallo, Monica F; Maiz, Cristina S; Miguez, Joaquin; Djuric, Petar M
Cost-Reference Particle Filters and Fusion of Information Artículo en actas
En: 2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, pp. 286–291, IEEE, Marco Island, FL, 2009.
Resumen | Enlaces | BibTeX | Etiquetas: costs, distributed processing, Electronic mail, fusion, Information filtering, Information filters, information fusion, Measurement standards, probabilistic information, random measures, sensor fusion, smoothing methods, Weight measurement
@inproceedings{Bugallo2009,
title = {Cost-Reference Particle Filters and Fusion of Information},
author = {Monica F Bugallo and Cristina S Maiz and Joaquin Miguez and Petar M Djuric},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4785936},
year = {2009},
date = {2009-01-01},
booktitle = {2009 IEEE 13th Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop},
pages = {286--291},
publisher = {IEEE},
address = {Marco Island, FL},
abstract = {Cost-reference particle filtering is a methodology for tracking unknowns in a system without reliance on probabilistic information about the noises in the system. The methodology is based on analogous principles as the ones of standard particle filtering. Unlike the random measures of standard particle filters that are composed of particles and weights, the random measures of cost-reference particle filters contain particles and user-defined costs. In this paper, we discuss a few scenarios where we need to meld random measures of two or more cost-reference particle filters. The objective is to obtain a fused random measure that combines the information from the individual cost-reference particle filters.},
keywords = {costs, distributed processing, Electronic mail, fusion, Information filtering, Information filters, information fusion, Measurement standards, probabilistic information, random measures, sensor fusion, smoothing methods, Weight measurement},
pubstate = {published},
tppubtype = {inproceedings}
}
Cost-reference particle filtering is a methodology for tracking unknowns in a system without reliance on probabilistic information about the noises in the system. The methodology is based on analogous principles as the ones of standard particle filtering. Unlike the random measures of standard particle filters that are composed of particles and weights, the random measures of cost-reference particle filters contain particles and user-defined costs. In this paper, we discuss a few scenarios where we need to meld random measures of two or more cost-reference particle filters. The objective is to obtain a fused random measure that combines the information from the individual cost-reference particle filters.