2014
Valera, Isabel; Ruiz, Francisco J R; Perez-Cruz, Fernando
Infinite Factorial Unbounded Hidden Markov Model for Blind Multiuser Channel Estimation Artículo en actas
En: 2014 4th International Workshop on Cognitive Information Processing (CIP), pp. 1–6, IEEE, Copenhagen, 2014, ISBN: 978-1-4799-3696-0.
Resumen | Enlaces | BibTeX | Etiquetas: Bayes methods, Bayesian non parametrics, Bayesian nonparametric models, blind multiuser channel estimation, Channel estimation, degrees of freedom, detection problems, dispersive channel model, generative model, Hidden Markov models, HMM, inference algorithm, infinite factorial unbounded hidden Markov model, Markov chain Monte Carlo, Markov processes, MIMO, MIMO communication, MIMO communication systems, multiple-input multiple-output (MIMO), multiple-input multiple-output communication syste, receiver performance, Receivers, Signal to noise ratio, Transmitters, unbounded channel length, unbounded number, user detection
@inproceedings{Valera2014a,
title = {Infinite Factorial Unbounded Hidden Markov Model for Blind Multiuser Channel Estimation},
author = {Isabel Valera and Francisco J R Ruiz and Fernando Perez-Cruz},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6844506},
isbn = {978-1-4799-3696-0},
year = {2014},
date = {2014-01-01},
booktitle = {2014 4th International Workshop on Cognitive Information Processing (CIP)},
pages = {1--6},
publisher = {IEEE},
address = {Copenhagen},
abstract = {Bayesian nonparametric models allow solving estimation and detection problems with an unbounded number of degrees of freedom. In multiuser multiple-input multiple-output (MIMO) communication systems we might not know the number of active users and the channel they face, and assuming maximal scenarios (maximum number of transmitters and maximum channel length) might degrade the receiver performance. In this paper, we propose a Bayesian nonparametric prior and its associated inference algorithm, which is able to detect an unbounded number of users with an unbounded channel length. This generative model provides the dispersive channel model for each user and a probabilistic estimate for each transmitted symbol in a fully blind manner, i.e., without the need of pilot (training) symbols.},
keywords = {Bayes methods, Bayesian non parametrics, Bayesian nonparametric models, blind multiuser channel estimation, Channel estimation, degrees of freedom, detection problems, dispersive channel model, generative model, Hidden Markov models, HMM, inference algorithm, infinite factorial unbounded hidden Markov model, Markov chain Monte Carlo, Markov processes, MIMO, MIMO communication, MIMO communication systems, multiple-input multiple-output (MIMO), multiple-input multiple-output communication syste, receiver performance, Receivers, Signal to noise ratio, Transmitters, unbounded channel length, unbounded number, user detection},
pubstate = {published},
tppubtype = {inproceedings}
}