2012
Montoya-Martinez, Jair; Artés-Rodríguez, Antonio; Hansen, Lars Kai; Pontil, Massimiliano
Structured Sparsity Regularization Approach to the EEG Inverse Problem Artículo en actas
En: 2012 3rd International Workshop on Cognitive Information Processing (CIP), pp. 1–6, IEEE, Baiona, 2012, ISBN: 978-1-4673-1878-5.
Resumen | Enlaces | BibTeX | Etiquetas: BES, brain electrical sources matrix, Brain modeling, EEG inverse problem, Electrodes, Electroencephalography, good convergence, Inverse problems, large nonsmooth convex problems, medical signal processing, optimisation, Optimization, proximal splitting optimization methods, Sparse matrices, spatio-temporal source space, structured sparsity regularization approach, undetermined ill-posed problem
@inproceedings{Montoya-Martinez2012,
title = {Structured Sparsity Regularization Approach to the EEG Inverse Problem},
author = {Jair Montoya-Martinez and Antonio Art\'{e}s-Rodr\'{i}guez and Lars Kai Hansen and Massimiliano Pontil},
url = {http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6232898},
isbn = {978-1-4673-1878-5},
year = {2012},
date = {2012-01-01},
booktitle = {2012 3rd International Workshop on Cognitive Information Processing (CIP)},
pages = {1--6},
publisher = {IEEE},
address = {Baiona},
abstract = {Localization of brain activity involves solving the EEG inverse problem, which is an undetermined ill-posed problem. We propose a novel approach consisting in estimating, using structured sparsity regularization techniques, the Brain Electrical Sources (BES) matrix directly in the spatio-temporal source space. We use proximal splitting optimization methods, which are efficient optimization techniques, with good convergence rates and with the ability to handle large nonsmooth convex problems, which is the typical scenario in the EEG inverse problem. We have evaluated our approach under a simulated scenario, consisting in estimating a synthetic BES matrix with 5124 sources. We report results using ℓ1 (LASSO), ℓ1/ℓ2 (Group LASSO) and ℓ1 + ℓ1/ℓ2 (Sparse Group LASSO) regularizers.},
keywords = {BES, brain electrical sources matrix, Brain modeling, EEG inverse problem, Electrodes, Electroencephalography, good convergence, Inverse problems, large nonsmooth convex problems, medical signal processing, optimisation, Optimization, proximal splitting optimization methods, Sparse matrices, spatio-temporal source space, structured sparsity regularization approach, undetermined ill-posed problem},
pubstate = {published},
tppubtype = {inproceedings}
}