2012
Achutegui, Katrin; Miguez, Joaquin; Rodas, Javier; Escudero, Carlos J
A Multi-Model Sequential Monte Carlo Methodology for Indoor Tracking: Algorithms and Experimental Results Artículo de revista
En: Signal Processing, vol. 92, no. 11, pp. 2594–2613, 2012.
Resumen | Enlaces | BibTeX | Etiquetas: Data fusion, Indoor positioning, Indoor tracking, Interacting multiple models, Sequential Monte Carlo, Switching observation models
@article{Achutegui2012,
title = {A Multi-Model Sequential Monte Carlo Methodology for Indoor Tracking: Algorithms and Experimental Results},
author = {Katrin Achutegui and Joaquin Miguez and Javier Rodas and Carlos J Escudero},
url = {http://www.tsc.uc3m.es/~jmiguez/papers/P32_2012_ Multi-Model Sequential Monte Carlo Methodology for Indoor Tracking- Algorithms and Experimental Results.pdf
http://www.sciencedirect.com/science/article/pii/S0165168412001077},
year = {2012},
date = {2012-01-01},
journal = {Signal Processing},
volume = {92},
number = {11},
pages = {2594--2613},
abstract = {In this paper we address the problem of indoor tracking using received signal strength (RSS) as a position-dependent data measurement. Since RSS is highly influenced by multipath propagation, it turns out very hard to adequately model the correspondence between the received power and the transmitter-to-receiver distance. Although various models have been proposed in the literature, they often require the use of very large collections of data in order to fit them and display great sensitivity to changes in the radio propagation environment. In this work we advocate the use of switching multiple models that account for different classes of target dynamics and propagation environments and propose a flexible probabilistic switching scheme. The resulting state-space structure is termed a generalized switching multiple model (GSMM) system. Within this framework, we investigate two types of models for the RSS data: polynomial models and classical logarithmic path-loss representation. The first model is more accurate however it demands an offline model fitting step. The second one is less precise but it can be fitted in an online procedure. We have designed two tracking algorithms built around a Rao-Blackwellized particle filter, tailored to the GSMM structure and assessed its performances both with synthetic and experimental measurements.},
keywords = {Data fusion, Indoor positioning, Indoor tracking, Interacting multiple models, Sequential Monte Carlo, Switching observation models},
pubstate = {published},
tppubtype = {article}
}
2010
Achutegui, Katrin; Rodas, Javier; Escudero, Carlos J; Miguez, Joaquin
A Model-Switching Sequential Monte Carlo Algorithm for Indoor Tracking with Experimental RSS Data Artículo en actas
En: 2010 International Conference on Indoor Positioning and Indoor Navigation, pp. 1–8, IEEE, Zurich, 2010, ISBN: 978-1-4244-5862-2.
Resumen | Enlaces | BibTeX | Etiquetas: Approximation methods, Computational modeling, Data models, generalized IMM system, GIMM approach, indoor radio, Indoor tracking, Kalman filters, maneuvering target motion, Mathematical model, model switching sequential Monte Carlo algorithm, Monte Carlo methods, multipath propagation, multiple model interaction, propagation environment, radio receivers, radio tracking, radio transmitters, random processes, Rao-Blackwellized sequential Monte Carlo tracking, received signal strength, RSS data, sensors, state space model, target position dependent data, transmitter-to-receiver distance, wireless technology
@inproceedings{Achutegui2010,
title = {A Model-Switching Sequential Monte Carlo Algorithm for Indoor Tracking with Experimental RSS Data},
author = {Katrin Achutegui and Javier Rodas and Carlos J Escudero and Joaquin Miguez},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5648053},
isbn = {978-1-4244-5862-2},
year = {2010},
date = {2010-01-01},
booktitle = {2010 International Conference on Indoor Positioning and Indoor Navigation},
pages = {1--8},
publisher = {IEEE},
address = {Zurich},
abstract = {In this paper we address the problem of indoor tracking using received signal strength (RSS) as position-dependent data. This type of measurements are very appealing because they can be easily obtained with a variety of (inexpensive) wireless technologies. However, the extraction of accurate location information from RSS in indoor scenarios is not an easy task. Due to the multipath propagation, it is hard to adequately model the correspondence between the received power and the transmitter-to-receiver distance. For that reason, we propose the use of a compound model that combines several sub-models, whose parameters are adjusted to different propagation environments. This methodology, called Interacting Multiple Models (IMM), has been used in the past either for modeling the motion of maneuvering targets or the relationship between the target position and the observations. Here, we extend its application to handle both types of uncertainty simultaneously and we refer to the resulting state-space model as a generalized IMM (GIMM) system. The flexibility of the GIMM approach is attained at the expense of an increase in the number of random processes that must be accurately tracked. To overcome this difficulty, we introduce a Rao-Blackwellized sequential Monte Carlo tracking algorithm that exhibits good performance both with synthetic and experimental data.},
keywords = {Approximation methods, Computational modeling, Data models, generalized IMM system, GIMM approach, indoor radio, Indoor tracking, Kalman filters, maneuvering target motion, Mathematical model, model switching sequential Monte Carlo algorithm, Monte Carlo methods, multipath propagation, multiple model interaction, propagation environment, radio receivers, radio tracking, radio transmitters, random processes, Rao-Blackwellized sequential Monte Carlo tracking, received signal strength, RSS data, sensors, state space model, target position dependent data, transmitter-to-receiver distance, wireless technology},
pubstate = {published},
tppubtype = {inproceedings}
}
2009
Achutegui, Katrin; Martino, Luca; Rodas, Javier; Escudero, Carlos J; Miguez, Joaquin
A Multi-Model Particle Filtering Algorithm for Indoor Tracking of Mobile Terminals Using RSS Data Artículo en actas
En: 2009 IEEE International Conference on Control Applications, pp. 1702–1707, IEEE, Saint Petersburg, 2009, ISBN: 978-1-4244-4601-8.
Resumen | Enlaces | BibTeX | Etiquetas: Bayesian methods, Control systems, Filtering algorithms, generalized interacting multiple model, GIMM, indoor radio, Indoor tracking, mobile radio, mobile terminal, Monte Carlo methods, multipath propagation, position-dependent data measurement, random process, random processes, Rao-Blackwellized sequential Monte Carlo tracking, received signal strength, RSS data, Sliding mode control, State-space methods, state-space model, Target tracking, tracking, transmitter-to-receiver distance, wireless network, wireless technology
@inproceedings{Achutegui2009,
title = {A Multi-Model Particle Filtering Algorithm for Indoor Tracking of Mobile Terminals Using RSS Data},
author = {Katrin Achutegui and Luca Martino and Javier Rodas and Carlos J Escudero and Joaquin Miguez},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5280960},
isbn = {978-1-4244-4601-8},
year = {2009},
date = {2009-01-01},
booktitle = {2009 IEEE International Conference on Control Applications},
pages = {1702--1707},
publisher = {IEEE},
address = {Saint Petersburg},
abstract = {In this paper we address the problem of indoor tracking using received signal strength (RSS) as a position-dependent data measurement. This type of measurements is very appealing because they can be easily obtained with a variety of wireless technologies which are relatively inexpensive. The extraction of accurate location information from RSS in indoor scenarios is not an easy task, though. Since RSS is highly influenced by multipath propagation, it turns out very hard to adequately model the correspondence between the received power and the transmitter-to-receiver distance. The measurement models proposed in the literature are site-specific and require a great deal of information regarding the structure of the building where the tracking will be performed and therefore are not useful for a general application. For that reason we propose the use of a compound model that combines several sub-models, whose parameters are adjusted to specific and different propagation environments. This methodology, is called interacting multiple models (IMM), has been used in the past for modeling the motion of maneuvering targets. Here, we extend its application to handle also the uncertainty in the RSS observations and we refer to the resulting state-space model as a generalized IMM (GIMM) system. The flexibility of the GIMM approach is attained at the expense of an increase in the number of random processes that must be accurately tracked. To overcome this difficulty, we introduce a Rao-Blackwellized sequential Monte Carlo tracking algorithm that exhibits good performance both with synthetic and experimental data.},
keywords = {Bayesian methods, Control systems, Filtering algorithms, generalized interacting multiple model, GIMM, indoor radio, Indoor tracking, mobile radio, mobile terminal, Monte Carlo methods, multipath propagation, position-dependent data measurement, random process, random processes, Rao-Blackwellized sequential Monte Carlo tracking, received signal strength, RSS data, Sliding mode control, State-space methods, state-space model, Target tracking, tracking, transmitter-to-receiver distance, wireless network, wireless technology},
pubstate = {published},
tppubtype = {inproceedings}
}