### 2012

Salamanca, Luis; Murillo-Fuentes, Juan Jose; Perez-Cruz, Fernando

Bayesian Equalization for LDPC Channel Decoding Artículo de revista

En: IEEE Transactions on Signal Processing, vol. 60, no. 5, pp. 2672–2676, 2012, ISSN: 1053-587X.

Resumen | Enlaces | BibTeX | Etiquetas: Approximation methods, Bayes methods, Bayesian equalization, Bayesian estimation problem, Bayesian inference, Bayesian methods, BCJR (Bahl–Cocke–Jelinek–Raviv) algorithm, BCJR algorithm, Channel Coding, channel decoding, channel equalization, channel equalization problem, Channel estimation, channel state information, CSI, Decoding, equalisers, Equalizers, expectation propagation, expectation propagation algorithm, fading channels, graphical model representation, intersymbol interference, Kullback-Leibler divergence, LDPC, LDPC coding, low-density parity-check decoder, Modulation, parity check codes, symbol posterior estimates, Training

@article{Salamanca2012b,

title = {Bayesian Equalization for LDPC Channel Decoding},

author = {Luis Salamanca and Juan Jose Murillo-Fuentes and Fernando Perez-Cruz},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6129544},

issn = {1053-587X},

year = {2012},

date = {2012-01-01},

journal = {IEEE Transactions on Signal Processing},

volume = {60},

number = {5},

pages = {2672--2676},

abstract = {We describe the channel equalization problem, and its prior estimate of the channel state information (CSI), as a joint Bayesian estimation problem to improve each symbol posterior estimates at the input of the channel decoder. Our approach takes into consideration not only the uncertainty due to the noise in the channel, but also the uncertainty in the CSI estimate. However, this solution cannot be computed in linear time, because it depends on all the transmitted symbols. Hence, we also put forward an approximation for each symbol's posterior, using the expectation propagation algorithm, which is optimal from the Kullback-Leibler divergence viewpoint and yields an equalization with a complexity identical to the BCJR algorithm. We also use a graphical model representation of the full posterior, in which the proposed approximation can be readily understood. The proposed posterior estimates are more accurate than those computed using the ML estimate for the CSI. In order to illustrate this point, we measure the error rate at the output of a low-density parity-check decoder, which needs the exact posterior for each symbol to detect the incoming word and it is sensitive to a mismatch in those posterior estimates. For example, for QPSK modulation and a channel with three taps, we can expect gains over 0.5 dB with same computational complexity as the ML receiver.},

keywords = {Approximation methods, Bayes methods, Bayesian equalization, Bayesian estimation problem, Bayesian inference, Bayesian methods, BCJR (Bahl\textendashCocke\textendashJelinek\textendashRaviv) algorithm, BCJR algorithm, Channel Coding, channel decoding, channel equalization, channel equalization problem, Channel estimation, channel state information, CSI, Decoding, equalisers, Equalizers, expectation propagation, expectation propagation algorithm, fading channels, graphical model representation, intersymbol interference, Kullback-Leibler divergence, LDPC, LDPC coding, low-density parity-check decoder, Modulation, parity check codes, symbol posterior estimates, Training},

pubstate = {published},

tppubtype = {article}

}