### 2015

Santos, Irene; Murillo-Fuentes, Juan Jose; Olmos, Pablo M

Block Expectation Propagation Equalization for ISI Channels Artículo en actas

En: 2015 23rd European Signal Processing Conference (EUSIPCO), pp. 379–383, IEEE, Nice, 2015, ISBN: 978-0-9928-6263-3.

Resumen | Enlaces | BibTeX | Etiquetas: Approximation algorithms, Approximation methods, BCJR algorithm, channel equalization, Complexity theory, Decoding, Equalizers, expectation propagation, ISI, low complexity, Signal processing algorithms

@inproceedings{Santos2015,

title = {Block Expectation Propagation Equalization for ISI Channels},

author = {Irene Santos and Juan Jose Murillo-Fuentes and Pablo M Olmos},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7362409},

doi = {10.1109/EUSIPCO.2015.7362409},

isbn = {978-0-9928-6263-3},

year = {2015},

date = {2015-08-01},

booktitle = {2015 23rd European Signal Processing Conference (EUSIPCO)},

pages = {379--383},

publisher = {IEEE},

address = {Nice},

abstract = {Actual communications systems use high-order modulations and channels with memory. However, as the memory of the channels and the order of the constellations grow, optimal equalization such as BCJR algorithm is computationally intractable, as their complexity increases exponentially with the number of taps and size of modulation. In this paper, we propose a novel low-complexity hard and soft output equalizer based on the Expectation Propagation (EP) algorithm that provides high-accuracy posterior probability estimations at the input of the channel decoder with similar computational complexity than the linear MMSE. We experimentally show that this quasi-optimal solution outperforms classical solutions reducing the bit error probability with low complexity when LDPC channel decoding is used, avoiding the curse of dimensionality with channel memory and constellation size.},

keywords = {Approximation algorithms, Approximation methods, BCJR algorithm, channel equalization, Complexity theory, Decoding, Equalizers, expectation propagation, ISI, low complexity, Signal processing algorithms},

pubstate = {published},

tppubtype = {inproceedings}

}

### 2012

Salamanca, Luis; Murillo-Fuentes, Juan Jose; Perez-Cruz, Fernando

Bayesian Equalization for LDPC Channel Decoding Artículo de revista

En: IEEE Transactions on Signal Processing, vol. 60, no. 5, pp. 2672–2676, 2012, ISSN: 1053-587X.

Resumen | Enlaces | BibTeX | Etiquetas: Approximation methods, Bayes methods, Bayesian equalization, Bayesian estimation problem, Bayesian inference, Bayesian methods, BCJR (Bahl–Cocke–Jelinek–Raviv) algorithm, BCJR algorithm, Channel Coding, channel decoding, channel equalization, channel equalization problem, Channel estimation, channel state information, CSI, Decoding, equalisers, Equalizers, expectation propagation, expectation propagation algorithm, fading channels, graphical model representation, intersymbol interference, Kullback-Leibler divergence, LDPC, LDPC coding, low-density parity-check decoder, Modulation, parity check codes, symbol posterior estimates, Training

@article{Salamanca2012b,

title = {Bayesian Equalization for LDPC Channel Decoding},

author = {Luis Salamanca and Juan Jose Murillo-Fuentes and Fernando Perez-Cruz},

url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6129544},

issn = {1053-587X},

year = {2012},

date = {2012-01-01},

journal = {IEEE Transactions on Signal Processing},

volume = {60},

number = {5},

pages = {2672--2676},

abstract = {We describe the channel equalization problem, and its prior estimate of the channel state information (CSI), as a joint Bayesian estimation problem to improve each symbol posterior estimates at the input of the channel decoder. Our approach takes into consideration not only the uncertainty due to the noise in the channel, but also the uncertainty in the CSI estimate. However, this solution cannot be computed in linear time, because it depends on all the transmitted symbols. Hence, we also put forward an approximation for each symbol's posterior, using the expectation propagation algorithm, which is optimal from the Kullback-Leibler divergence viewpoint and yields an equalization with a complexity identical to the BCJR algorithm. We also use a graphical model representation of the full posterior, in which the proposed approximation can be readily understood. The proposed posterior estimates are more accurate than those computed using the ML estimate for the CSI. In order to illustrate this point, we measure the error rate at the output of a low-density parity-check decoder, which needs the exact posterior for each symbol to detect the incoming word and it is sensitive to a mismatch in those posterior estimates. For example, for QPSK modulation and a channel with three taps, we can expect gains over 0.5 dB with same computational complexity as the ML receiver.},

keywords = {Approximation methods, Bayes methods, Bayesian equalization, Bayesian estimation problem, Bayesian inference, Bayesian methods, BCJR (Bahl\textendashCocke\textendashJelinek\textendashRaviv) algorithm, BCJR algorithm, Channel Coding, channel decoding, channel equalization, channel equalization problem, Channel estimation, channel state information, CSI, Decoding, equalisers, Equalizers, expectation propagation, expectation propagation algorithm, fading channels, graphical model representation, intersymbol interference, Kullback-Leibler divergence, LDPC, LDPC coding, low-density parity-check decoder, Modulation, parity check codes, symbol posterior estimates, Training},

pubstate = {published},

tppubtype = {article}

}