2011
Tuia, D; Verrelst, J; Alonso, L; Perez-Cruz, Fernando; Camps-Valls, Gustavo
Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation Artículo de revista
En: IEEE Geoscience and Remote Sensing Letters, vol. 8, no. 4, pp. 804–808, 2011, ISSN: 1545-598X.
Resumen | Enlaces | BibTeX | Etiquetas: Biological system modeling, Biomedical imaging, Biophysical parameter estimation, chlorophyll content estimation, Estimation, fractional vegetation cover, geophysical image processing, hyperspectral compact high-resolution imaging spec, image resolution, leaf area index, model inversion, multioutput support vector regression method, nonparametric biophysical parameter estimation, Parameter estimation, regression, regression analysis, Remote sensing, remote sensing biophysical parameter estimation, remote sensing image, single-output support vector regression method, spectrometers, Support vector machines, support vector regression (SVR), Vegetation mapping
@article{Tuia2011,
title = {Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation},
author = {D Tuia and J Verrelst and L Alonso and Fernando Perez-Cruz and Gustavo Camps-Valls},
url = {http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5735189},
issn = {1545-598X},
year = {2011},
date = {2011-01-01},
journal = {IEEE Geoscience and Remote Sensing Letters},
volume = {8},
number = {4},
pages = {804--808},
abstract = {This letter proposes a multioutput support vector regression (M-SVR) method for the simultaneous estimation of different biophysical parameters from remote sensing images. General retrieval problems require multioutput (and potentially nonlinear) regression methods. M-SVR extends the single-output SVR to multiple outputs maintaining the advantages of a sparse and compact solution by using an $epsilon$-insensitive cost function. The proposed M-SVR is evaluated in the estimation of chlorophyll content, leaf area index and fractional vegetation cover from a hyperspectral compact high-resolution imaging spectrometer images. The achieved improvement with respect to the single-output regression approach suggests that M-SVR can be considered a convenient alternative for nonparametric biophysical parameter estimation and model inversion.},
keywords = {Biological system modeling, Biomedical imaging, Biophysical parameter estimation, chlorophyll content estimation, Estimation, fractional vegetation cover, geophysical image processing, hyperspectral compact high-resolution imaging spec, image resolution, leaf area index, model inversion, multioutput support vector regression method, nonparametric biophysical parameter estimation, Parameter estimation, regression, regression analysis, Remote sensing, remote sensing biophysical parameter estimation, remote sensing image, single-output support vector regression method, spectrometers, Support vector machines, support vector regression (SVR), Vegetation mapping},
pubstate = {published},
tppubtype = {article}
}